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This program is for follow-on research efforts for the participants in the Summer Faculty Research Program:
Funding is provided to establish RIP awards to about half the number of participants in the SFRP. Participants
in the 1989 SFRP competed for funding under the 1989 RIP. Evaluation of the proposals were made by the
contractor. Evaluation criteria consisted of: 1. Technical excellence of the proposal 2. Continuation of the
SFRP effort 3. Cost sharing by the university. The list of proposals selected for award was forwarded to
AFOSR for approval of funding and for research efforts to be completed by 31 December 1990. The following
summarizes the events for the evaluation of proposals and award of funding under the RIP. A. RIP proposals
were submitted to the contractor by 1 November 1990. The proposals were limited to $20,000 plus cost sharing
by the universitics. The universities were encouraged to cost share, since this is an effort to establish a long
term effort between the Air Force and the university. B. Proposals were evaluated on the criteria listed above
and the final award approval was given by AFOSR after consultation with the Air Force Laboratories. C.
Subcontracts were negotiated with the Universities. There were a total of 122 RIP awards made under the 1989
program.
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INTRODUCTION
. Research Initiation Program - 1989

AFOSR has provided funding for follow-on research efforts for the participants in the
Summer Faculty Research Program. Initially, this program was conducted by AFOSR and
popularly known as the Mini-Grant Program. Since 1983 the program has been conducted by
the Summer Faculty Research Program (SFRP) contractor and is now called the Research
Initiation Program (RIP). Funding is provided to establish RIP awards to about half the number
of participants in the SFRP.

Participants in the 1989 SFRP competed for funding under the 1989 RIP. Participants
submitted cost and technical proposals to the contractor by 1 November 1989, following their
participation in the 1989 SFRP.

Evaluation of these proposals were made by the contractor. Evaluation criteria consisted
of:

1. Technical excellence of the proposal
2. Continuation of the SFRP effort
3. Cost sharing by the university

The list of proposals selected for award was forwarded to AFOSR for approval of funding.
Those approved by AFOSR were funded for research efforts to be compieted by 31 December
1990.

The following summarizes the events for the evaluation of proposals and award of funding
under the RIP.

A.  RIP proposals were submitted to the contractor by 1 November 1989. The
proposals were limited to $20,000 plus cost sharing by the universities. The
universities were encouraged to cost share, since this is an effort to establish a long
term effort between the Air Force and the university.

B. Proposals were evaluated on the criteria listed above and the final award approval
was given by AFOSR after consultation with the Air Force Laboratories.

C.  Subcontracts were negotiated with the universities. The period of performance of
the subcontract was between October 1989 and December 1990.

Copies of the final reports are presented in Volumes I through IV of the 1989 Research
Initiation Program Report. There were a .al of 122 RIP awards made under the 1989 program.
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PROGRAM STATISTICS

Total SFRP Participants 168
Total RIP Proposals submitted by SFRP 132
Total RIP Proposals submitted by GSRP 2
Total RIP Proposals submitted 134
Total RIP’s funded to SFRP 94
Total RIP’s funded to GSRP 2
Total RIP’s funded 96
Total RIP Proposals submitted by HBCU’s 9

Total RIP Proposals funded to HBCU’s 5
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Laboratory

AAMRL
WRDC/APL
ATL

AEDC
WRDC/AL
ESMC

ESD

ESC
WRDC/FDL
FISRL
AFGL

HRL
WRDC/ML
OEHL

RADC
SAM

WHMC

Total

LABORATORY PARTICIPATION

Participants

12
10

9
10

12
15
17

168

Submitted

10
8

9 (1 GSRP)
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10 (1 GSRP)
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Funded

6
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LIST OF PARTICIPATING UNIVERSITIES

Alabama, University of

Alfred University
Arkansas-Pine Bluff, Univ. of
Auburn University

Bethel College

Boston College

Brescia College

California Polytechnic
California State University
Cincinnati, University of
Denver, University of

Eastern Kentucky University
Florida Atlantic University
Florida Institute

Florida, University of

Hamilton College

Harvard University

Illinois Institute of Technology
Illinois-Rockford, University of
Illinois State University
Indiana-Purdue, University of
Kansas State University
Lawrence Technological University
Long Island University

Lowell, University of
Massachusetts, University of
Michigan, University of
Minnesota-Duluth, University of
Mississippi State University
Missouri-Rolla, University of
Murray State University
Nebraska-Lincoln, University of
New Hampshire, University of
New York Institute of Technology

vi

New York, State University of
North Carolina State University
Northern Arizona University
Northern Illinois University
Northwestern University

Notre Dame, University of
Ohio State University
Oklahoma, University of

Old Dominion University
Penasylvania State University
Pittsburgh, University of
Rhode Island, University of
San Diego State University
San Jose State University
Savannah State College
Scranton, University of
Southern Oregon State College
Southwest Texas State University
Tennessee State University
Tennessee Technological Univ.
Texas A&M University

Texas Southern University
Texas-San Antonio, University of
Transylvania University

Trinity University

US Naval Academy

Utah State University

Utica College

Vanderbilt University
Washington State University
West Virginia University
Wisconsin-Platteville, Univ. of
Worchester Polytechnic Institute
Wright State University

Total
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PARTICIPANTS LABORATORY ASSIGNMENT
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AERO PROPULSION AND POWER DIRECTORATE

(Wright-Patterson Air Force Base)

Dr. Jerry Clark
Wright State University

Specialty: Physics

Dr. Frank Gerner
University of Cincinnati
Specialty: Mechanical Engineering

Dr. Thomas Lalk
Texas A&M University
Specialty: Mechanical Engineering

ARMAMENT DIRECTORATE
(Eglin Air Force Base)

Dr. Peter Armendarez
Brescia College
Specialty: Physical Chemistry

Dr. Joseph Brown
Mississippi State University
Specialty: Mechanical Engineering

Dr. Roger Bunting
Illinois State University
Specialty: Inorganic Chemistry

Dr. Satish Chandra
Kansas State University
Specialty: Electrical Engineering

Dr. David Cicci
Auburn University
Specialty: Aerospace Engineering

Dr. Baruch Lieber
State University of New York
Specialty: Aerospace Engineering

Dr. William Schuiz

Eastern Kentucky University
Specialty: Analytical Chemistry
760-7MG-079 and 210-10MG-095

Dr. Richard Tankin
Northwestern University
Specialty: Mechanical Engineering

Mr. William Newbold (GSRP)
University of Florida
Specialty: Aerospace Engineering

Dr. Boghos Sivazlian
University of Florida
Specialty: Operations Research

Dr. Steven Trogdon
University of Minnesota-Duluth
Specialty: Mechanics

Mr. Asad Yousuf
Savannah State College
Specialty: Electrical Engineering

viil




ARMSTRONG LABORATORY
(Brooks Air Force Base)

Dr. Robert Blystone
Trinity University
Speciaity: Zooiogy

Dr. Carolyn Caudle-Alexander
Tennessee State University
Specialty: Microbiology

Dr. James Chambers
University of Texas - San Antonin
Speciaity: Biochemistry

Dr. Mark Cormwall
Northern Arizona University
Specialty: Human Performance

Dr. Vito DelVecchio
University of Scranton
Specialty: Biochemical Engineering

#

Dr. Gwendolyn Howze
Texas Southern University
Specialty: Molecular Biology

Dr. Harold Longbotham
University of Texas-San Antonio
Specialty: Eiectrical Engineering

Dr. Ralph Peters (1987)
Wichita State University

Specialty: Zoology

Dr. Raymond Quock
Univ. of Illinois at Rockford
Specialty: Pharmacology

Dr. Ram Tripathi
University of Texas-San Antonio
Specialty: Statistics

ARNOLD ENGINEERING DEVELOPMENT CENTER

(Arnold Air Force Base)

Dr. Brian Beecken
Bethel College
Specialty: Physics

Dr. Stephen Cobb
Murray State University
Specialty: Physics

Dr. John Francis
University of Oklahoma
Specialty: Mechanical Engineering

Dr. Orlando Hankins
University of North Carolina State
Specialty: Nuclear Engineering

Dr. Lang-Wah Lee
University of Wisconsin-Platteville
Specialty: Mechanical Engineering

Dr. Chun Fu Su
Mississippi State University

Specialty: Physics

Dr. Richard Tipping
University of Alabama
Specialty: Physics

Dr. D. Wilkes
Vanderbilt University
Specialty: Electrical Engineering

ix




AVIONICS DIRECTORATE
(Wright-Patterson Air Force Base)

Dr. David Choate
Transylvania University
Specialty: Mathematics

Dr. R. H. Cofer
Florida Institute
Specialty: Electrical Engineering

CREW SYSTEMS DIRECTORATE
(Wright-Patterson Air Force Base)

Dr. Thomas Lockwood
Wright State University
Specialty: Toxicology

Dr. Ethel Matin
Long Island University
Specialty: Experimental Psychology

Dr. Randy Pollack
Wright State University

Specialty: Anthropology

Dr. Donald Robertson (1987)
Indiana University of Pennsylvania
Specialty: Psychology

Dr. Dar-Biau Liu
California State University
Specialty: Applied Mathematics

Dr. Robert Shock
Wright State University
Specialty: Mathematics

Dr. Michael Stanisic
University of Notre Dame
Specialty: Robotics

Dr. Chi-Ming Tang
State University of New York
Specialty: Mathematics

Dr. Ebo Tei
University of Arkansas-Pine Bluff

Specialty: Psychology




ENGINEERING AND SERVICES CENTER

(Tyndall Air Force Base)

Dr. William Bannister
University of Lowell
Specialty: Organic Chemistry

Dr. Emerson Besch
University of Florida
Specialty: Animal Physiology

Dr. Avery Demond
University of Massachusetts
Specialty: Civil Engineering

Dr. Kirk Hatfield
University of Florida
Specialty: Civil Engineering

ELECTRONIC SYSTEMS DIVISION
(Hanscom Air Force Base)

Dr. Stephen Kolitz (1986)
University of Massachusetts
Specialty: Operations Research

FLIGHT DYNAMICS DIRECTORATE
(Wright-Patterson Air Force Base)

Dr. Kenneth Comelius
Wright State University
Specialty: Fluid Mechanics

Dr. Arnold Polak
University of Cincinnati
Specialty: Aerospace Engineering

Dr. Nisar Shaikh
University of Nebraska-Lincoln
Specialty: Applied Mathematics

Dr. Kim Hayes
University of Michigan

Specialty: Environmental Engineering

Dr. Deborah Ross
University of Indiana-Purdue

Specialty: Microbiology

Dr. Dennis Truax (1987)
Mississippi State University
Specialty: Civil Engineering

Dr. George Veyera
University of Rhode Island
Specialty: Civil Engineering

Dr. Sundaram Natarajan
Tennessee Technical University
Specialty: Electrical Engineering

Dr. William Wolfe
Ohio State University

Specialty: Engineering

Dr. Lawrence Zavodney
Ohio State University
Specialty: Mechanical Engineering

xi




FRANK J. SEILER RESEARCH LABORATORY

(United States Air Force Academy)

Dr. Robert Granger
US Naval Academy
Specialty: Mechanical Engineering

Dr. Clay Sharts
San Diego State University

Specialty: Chemistry

GEOPHYSICS DIRECTORATE
(Hanscom Air Force Base)

Dr. Phanindramohan Das
Texas A&M University
Specialty: Geophysical Science

Dr. Alan Kafka
Boston College
Specialty: Geophysics

Dr. Charles Lishawa
Utica College
Specialty: Physical Chemistry

HUMAN RESQURCES DIRECTORATE
(Brooks, Williams and Wright-Patterson Air Force

Dr. Kevin Bennett
Wright State University

Specialty: Applied Psychology

Dr. Deborah Mitta
Texas A&M University
Specialty: Industrial Engineering

Dr. William Smith
University of Pittsburgh
Specialty: Linguistics

Dr. Stanley Stephenson
Southwest Texas State University

Specialty: Psychology

Dr. Timothy Troutt
Washington State University
Specialty: Mechanical Engineering

Dr. Hung Vu
California State University
Specialty: Applied Mechanics

Dr. Thomas Miller
University of Oklahoma

Specialty: Physics

Dr. Henry Nebel
Alfred University

Specialty: Physics

Dr. Craig Rasmussen
Utah State University

Specialty: Physics

Base)

Mr. John Williamson (GSRP)
Texas A&M University

Specialty: Psychology

Dr. Michael Wolfe
West Virginia University
Specialty: Management Science

Dr. Yehoshua Zeevi
Harvard University
Specialty: Electrical Engineering

Dr. Robert Zerwekh
Northern Illinois University

Specialty: Philosophy

Xit




MATERIALS DIRECTORATE

(Wright-Patterson Air Force Base)

Dr. Donald Chung
San Jose State University
Specialty: Material Science

Dr. Kenneth Currie
Kansas State University
Specialty: Industrial Engineering

Dr. Michael Resch
University of Nebraska-Lincoln
Specialty: Materials Science

Dr. James Sherwood

University of New Hampshire
Specialty: Aerospace Mechanics
210-9MG-088 and 210-10MG-098

Dr. Michael Sydor
University of Minnesota-Duluth

Specialty: Physics

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE

(Brooks Air Force Base)

Dr. Stewart Maurer
New York Institute of Technology
Specialty: Electrical Engineering

ROCKET PROPULSION DIRECTORATE

(Edwards Air Force Base)

Dr. Lynn Kirms
Southern Oregon State College
Specialty: Organic Chemistry

Dr. Mark Kirms
Southern Oregon State College
Specialty: Organic Chemistry

Dr. Faysal Kolkailah
California Polytechnic
Specialty: Mechanical Engineering

Dr. Vittal Rao
University of Missouri-Rolla
Specialty: Control Systems

Dr. Larry Swanson
University of Denver
Specialty: Mechanical Engineering

Dr. Roger Thompson
Pennsylvania State University
Specialty: Engineering Mechanics

Xiii




ROME LABORATORIES
(Griffiss Air Force Base)

Dr. Charles Alajajian
West Virginia University
Specialty: Electrical Engineering

Dr. Ian Grosse
University of Massachusetts
Specialty: Mechanical Engineering

Dr. Henry Helmken
Florida Atlantic University

Specialty: Physics

Dr. Michael Klein
Worcester Poly Institute

Specialty: Physics

Dr. William Kuriger
University of Oklahoma
Specialty: Electrical Engineering

WEAPONS DIRECTORATE
(Kirtland Air Force Base)

Dr. Harry Hogan
Texas A&M University
Specialty: Mechanical Engineering

Dr. Arkady Kheyfets (1988)
North Carolina State University
Specialty: Mathematical Physics

Dr. Khaja Subhani
Lawrence Tech. University
£ zcialty: Electrical Engineering

Dr. David Sumberg (1987)
Rochester Institute of Tech.

Specialty: Physics

Dr. Donald Ucci
Illinois Institute of Technology
Specialty: Electrical Engineering

Dr. Kenneth Walter (1988)
Prairie View A&M University
Specialty: Chemical Engineering

Dr. James Wolper
Hamilton College
Specialty: Mathematics

Dr. Duc Nguyen
Old Dominion University

Specialty: Civil Engineering

Dr. Duane Sanders
Texas A&M University
Specialty: Civil Engineering
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MINI-GRANT RESEARCH REPORTS

Technical
Report
Number

Volume I

Title and Mini-Grant Number Professor

Rome Laboratories

1

Optimal Design of Finite Wordlength FIR Digital
Filters for an Analog Transversal Filter with Tap
Weight Circuitry Defects Using Adaptive Modeling
210-10MG-123

Automatic Adaptive Remeshing for Finite Element
Reliability Assessment of Electronic Devices
210-10MG-129

Ionospherically-Induced Phase Distortion Across
Wide-Aperture HF Phased Arrays
210-10MG-047

A Study of Interacting Tunneling Units with
Possible Application to High Temperature
Superconductors

210-10MG-057

Reduced Bandwidth Binary Phase-Only Filters
210-10MG-052

Computer Modeling of GaAs/AlGaAs MQW Devices

for Optical Properties
210-10MG-107

Fiber Optic Distribution System for Phased Array
Antennas
760-7MG-113

Continuation Study of a Communications
Receiver for Spread Spectrum Signals
210-10MG-067

Development of a System to Deposit Thin Films of
Titanium Carbide Using Atomic Layer Epitaxy
219-9MG-113

Xvi

Dr. Charles Alajajian

Dr. Ian Grosse

Dr. Henry Helmken

Dr. Michael Klein

Dr. William Kuriger

Dr. Khaja Subhani

Dr. David Sumberg

(1987)

Dr. Donald Ucci

Dr. Kenneth Walter
(1988)




10 Neural Networks for Invaniant Pattern Recogniton  Dr. James Wolper
210-10MG-061

Amold Engineering Development Center

11 The Performance of IR Detectors Illuminated Dr. Brian Beecken
by Monochromatic Radiation
210-10MG-029

12 Sodium Fluorescence Studies for Application to Dr. Stephen Cobb
RDYV of Hypersonic Flows
210-10MG-076

13 Report Not Publishable At This Time Dr. John Francis
210-10MG-086

14 NOT PUBLISHABLE AT THIS TIME Dr. Orlando Hankins
210-10MG-134

15 An Experimental Approach for the Design of a Dr. Lang-Wah Lee
Mixer for an Arc Heater
210-10MG-027

16 No Report Submitted (1986) Dr. Arthur Mason
760-6MG-099

17 Laser-Induced Fluorescence of Nitric Oxide Dr. Chun Fu Su
210-10MG-054

18 Spectroscopic Monitoring of Exhaust Gases Dr. Richard Tipping
210-10MG-099

19 Transient Analysis of Parallel Distributed Dr. D. Wilkes

Structurally Adaptive Signal Processing Systems
210-10MG-084

Electronic Systems Division

20 Reliability in Satellite Communication Networks Dr. Stephen Kolitz
760-6MG-094 (1986)
21 Comparison of Testability Analysis Tools for USAF Dr. Sundaram Natarajan

210-10MG-065

Xvii




Engineering and Services Center

22

23

25

27

28

29

30

Anomalous Effects of Water in Fire Fighting:
Facilitation of JP Fires by Azeotropic
Distillation Effects

210-10MG-115

Effect of Simulated Jet Aircraft Noise on
Domestic Goats
210-10MG-119

Migration of Organic Liquid Contaminants Using
Measured and Estimated Transport Properties
210-10MG-025

Laboratory Investigations of Subsurface
Contaminant Sorption Systems
210-10MG-064

Effects of Surfactants on Partitioning of
Hazardous Organic Components of JP-4 Onto
Low Organic Carbon Soils

210-10MG-125

Biodegradation of Hydrocarbon Components of
Jet Fuel JP-4
210-10MG-018

760-7TMG-079; See 210-10MG-095
Report # 71
(Aero Propulsion and Power Directorate)

Pretreatment of Wastewaters Generated by
Firefighter Training Facilities
760-7TMG-105

Stress Transmission and Microstructure in
Compacted Moist Sand
210-10MG-019

Frank J. Seiler Research Laboratory

31

No Report Submitted (1985)
760-OMG-008

xviii

Dr.

Dr.

Dr.

Dr.

Dr.

William Bannister

Emerson Besch

Avery Demond

Kirk Hatfield

. Kim Hayes

. Deborah Ross

. William Schulz

Dennis Truax

(1987)

Dr.

Dr.

George Veyera

Hermann Donnert




32 Reference AIAA 91-0745; Flow Induced Vibrations Dr. Robert Granger
of Thin Leading Edges; U.S. Naval Academy
210-10MG-011

33 No Report Submitted (1985) Dr. Ronald Sega
760-0MG-107
34 Use of Nitronium Triflate for Nitration of Dr. Clay Sharts

Nitrogen Heterocycles
210-10MG-072

35 No Report Submitted (1985) Dr. Walter Trafton
760-0MG-053

36 Active Control of Dynamic Stall Phenomena Dr. Timothy Troutt
210-10MG-049

37 Modeling and Control of a Fundamental Structure-  Dr. Hung Vu

Control System: A Cantilever Beam and a Structure-
Bome Reaction-Mass Actuator
210-10MG-021

Volume II
Phillips Laboratory
Geophysics Directorate
38 Cumulus Parameterization in Numerical Prediction = Dr. Phanindramohan Das
Models: A New Parcel-Dynamical Approach
210-10MG-087
39 Rg as a Depth Discriminant for Earthquakes and Dr. Alan Kafka
Explosions in New England and Eastern Kazakhstan
210-10MG-082
40 Time=-of-Flight Simulations of Collisions of Dr. Charles Lishawa
H, *0O* with D,O
210-10...G-117

41 Electron Attachment to Transition-Metal Acids Dr. Thomas Miller
210-10MG-113

Xix




42

43

CO2 (4.3um) Vibrational Temperatures and Limb
Radiances in the Mesosphere and Lower
Thermosphere: Sunlit Conditions and Terminator
Conditions

210-10MG-055

Development and Application of a Dynamo
Model of Electric Fields in the Middle-and
Low-Latitude Ionosphere

210-10MG-060

Rocket Propulsion Directorate

44

45

46

47

48

49

Synthesis of Tetranitrohomocubane
210-10MG-091

Synthesis of Poly(Imide Siloxane) Copolymers and
Graft Copolymers
210-10MG-090

Finite Element Analysis for Composite Structures
210-10MG-127

Robust Control of Large Flexible Structures Using
Reduced Order Models
210-10MG-043

Theoretical Study of Capillary Pumping in
Heat Pipes
210-10MG-026

Multi-Body Dynamics Experiment Design
210-10MG-121

Advanced Weapons Survivability Directorate,
Lasers and Imaging Directorate, and
Space and Missle Technology Directorate

50

51

No Report Submitted (1988)
210-9MG-119

No Report Submitted (1986)
760-6MG-054

XX

Dr.

Dr.

Dr.

Dr.

Henry Nebel

Craig Rasmussen

. Lynn Kirms

. Mark Kirms

. Faysal Kolkailah

. Vittal Rao

. Larry Swanson

. Roger Thompson

Lane Clark

Fabian Hadipriono




52

53

54

55

56

Improved Modeling of the Response of Pressurized  Dr. Harry Hogan

Composite Cylinders to Laser Damage
210-10MG-008

Relativistic Effects in Global Positioning
210-9MG-114

No Report Submitted (1987)
760-TMG-047

Parallel and Vector Processing for Nonlinear
Finite Element Analysis
210-10MG-051

Resonant Scattering of Elastic Waves by
a Random Distribution of Spherical
Inclusions in a Granular Medium
210-10MG-085

xxi

Dr. Arkady Kheyfets
(1988)

Dr. Barry McConnell

Dr. Duc Nguyen

Dr. Duane Sanders




Volume III
Wright Laboratory
Armament Directorate

57 Reactive Aluminum "Burst” Dr. Peter Armendarez
210-10MG-106

58 Damage of Aircraft Runways by Aerial Bombs Dr. Joseph Brown
210-10MG-104
59 Ionic Polymer Membranes for Capacitor Electrolytes Dr. Roger Bunting

210-10MG-096

60 Multisensor Seeker Feasibility Study for Medium Dr. Satish Chandra
Range Air-to-Air Missiles
210-10MG-074

61 Sequential Ridge-Type Estimation Methods Dr. David Cicci
210-10MG-044

62 Numerical Simulation of Transonic Flex-Fin Mr. Wi.liam Newbold
Projectile Aerodynamics
210-10MG-005

63 Effectiveness Models for Smart Submunitions Dr. Boghos Sivazlian
Systems
210-10MG-002

64 Detonation Modeling of Explosives Using the Dr. Steven Trogdon
Hull Hydrodynamics Computer Code
210-10MG-010

65 Stress Analysis of a Penatrator using Finite Dr. Wafa Yazigi
Element Method (1988)
210-9MG-015

66 Knowledge-Based Target Detection for the Mr. Asad Yousuf

RSPL/IPL Laboratories
210-10MG-017

Aero Propulsion and Power Directorate
67 Study of Electron Impact Infrared Excitation Dr. Jerry Clark
Funtions of Xenon

210-10MG-100

XXil




68

69

70

71

72

Micro Heat Pipes
210-10MG-066

No Report Submitted
210-10MG-109

Analysis of the Flowfield in a Pipe with a Sudden
Expansion and with Different Coaxial Swirlers
210-10MG-001

Jet Fuel Additive Efficiency Analysis with a
Surrogate JP-8 Fuel
210-10MG-095

Comparison Between Experiments and Preditions
Based on Maximum Entropy for Sprays from a
Pressure Atomizer

210-10MG-036

Avionics Directorate

73

74

75

76

77

An Algorithm to Resolve M. ltipl.: Frequencies
210-10MG-031

Model Based Bayesian T~rge: kecognition
210-10MG-022

Study of Sky Back -ounds and Subvisual
Cirrus
210-9MC-120

Simulation of Dynamic Task Scheduling
Algorithms for ADA Distributed System
Evaluation Testbed (ADSET)
210-10MG-020

Towards a Course-Grained Test Suite for VHDL
Validation
210-10MG-012

Flight Dynamics Directorate

78

Experimental Study of Pneumatic Jet/Vortical
Interaction on a Chined Forebody Configuration
at High Angles of Attack

210-10MG-046

xXiii

Dr.

Dr.

. Frank Gerner

Thomas Lalk

Baruch Lieber

. William Schulz

. Richard Tankin

. David Choate

. R. H. Cofer

. Gerald Grams

. Dar-Biau Liu

. Robert Shock

. Kenneth Cormelius




79

80

81

82

83

Numerical Study of Surface Roughness Effect on
Hypersonic Flow Separation
210-10MG-056

Ultrasonic Stress Measurements and Craze Studies
for Transparent Plastic Enclosures of Fighter
Aircraft

210-10MG-126

210-9MG-088, See 210-10MG-098
Report # 87
Materials Directorate

Experimental Determination of Damage Initiation
Resulting from Low Velocity Impact of Composites
210-10MG-094

The Response of Nonlinear Systems to Random
Excitation
210-10MG-093

Materials Directorate

84

85

86

87

88

The In-Situ Deposition of High Tc
Superconducting Thin Film by Laser Ablation
210-10MG-116

Self-Improving Process Control for Molecular
Beam Epitaxy of Ternary Alloy Materials on
GaAs and InPh Substrates

210-10MG-030

Detection of Fatigue Crack Initiation Using
Surface Acoustic Waves
210-10MG-120

Investigation of the Thermomechanical
Response of a Titanium Aluminide Metal
Matrix Composite Using a Viscoplastic
Constitutive Theory

210-10MG-098

No Report Submitted (1985)
760-0MG-067
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Optimal Design Qf Finite Wordlength FIR Digitai Filters
For an Analog Transversal Filter With Tap Weight

Circuitry Defects Using Adaptive Modeling

by
Charles J. Alajajian

ABSTRACT

An algorithm is presented for designing optimal finite wordlength FIR digital filters for a
programmable analog transversal filter with known tap weight circuitry defects. The technique
is an application of an adaptive modeling scheme formerly used by Widrow and Stearns for the

synthesis of infinite-precision FIR digital filters from specified frequency response characteristics.

Unlike many existing algorithms which utilize successive rounding of the infinite-precision
coefficients, the proposed adaptive modeling scheme for the optimal (Chebyshev) design of finite
wordlength FIR digital filters incorporates the finite wordlength restriction as part of the filter
design procedure. The frequency response characteristics in the fundamental frequency range are
specified by taking the DFT of the optimal infinite-precision filter coefficients; these coefficients

are obtained via the Parks-McClellan algorithm.

A standard system identification architecture is used in which the optimal infinite-precision filter
represents the plant, which is known in this scheme. The plant and the adaptive filter are
simultaneously driven by an input signal consisting of a sum of sinuosoids. Using the truncated,
optimal infinite-precision coefficients as the initial tap weight vector, the LMS algorithm, which
is implemented digitally, adjusts the tap weights from among a finite set of fixed-point numbers,

in an attempt to minimize the mean square error in the frequency response.

The algorithm is conceptually simple, requires very little computational effort, and is effective

even for relatively long filter lengths.
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I. INT N

The programmable analog transversal filter (PTF) prototype used in this work is based upon an
acoustic charge transport (ACT) tapped delay line with active (GaAs circuits for coefficient
storage and the tap weight circuitry {1]. When a digital filter is implemented on this special-
purpose hardware, the infinite-precision filter coefficients are represented internally by the ACT
PTF in digital memory by a 6—bit, signed magnitude, tap weight word [l]. "inis internal
quantization results in a departure from the ideal frequency response. Coefficient-quantization

errors in FIR digital filters have been thoroughly studied by many authors, among them [5],
(15) .

In the manufacture of ACT PTF’s, the multiple tap weight circuits may exhibit some error in
representing the tap weights, primarily due to certain parasitic and nonideal effects unavoidable
in a practical weighting circuit.  However, by careful modeling, these effects may be

compensated for [1].

Of a more severe nature are defects in the tap weight circuitry which preclude the ability to
completely address, or alter the tap weight values. That is, one or more bits may be fixed at
some prescribed level — fully on, fully off, or at some level in between [18]. These tap weight

circuitry defects manifest themselves as errors in the filter’s frequency response.

An adaptive modeling scheme formerly used by Widrow and Stearns (12], [13] for the synthesis
of FIR digital filters is modified and applied to the design of optimal finite wordlength FIR
digital filters for an ACT programmable transversal filter with these tap weight circuitry defects.
The modified scheme uses a digital implementation of the LMS algorithm which attempts to
find a set of tap weights from among a finite set of fixed-point numbers, which minimizes the

mean-squared error in the frequency response.

My research interests have been in the areas of computer-aided design of electronic circuits and
in digital signal processing; this provides a wide array of tools with which to address this

problem.

II. OBJECTIVES

The primary objective of this research effort is to develop an algorithm to design optimal finite
wordlength FIR digital filters for a programmable transversal filter, based upon ACT
technology, with tap weight circuitry defects. Computer simulation will be used to assess the

effectiveness of the algorithm and to simulate the tap weight circuitry defects of the actual ACT

14




PTF hardware.

Presently, a prototype analog PTF, built primarily for demonstration purposes (1] consists of an
analog tapped-delay line with 64 taps which utilizes digital memory to store the binary
representation of each of the desired tap weights; in [1] this is termed a digital/analog (D/A)
PTF. The primary components are an analog tapped-delay line and digital reference storage
registers and weighting circuits. The analog tapped-delay line processes the input signal; the
digital storage registers record the tap weight words; the weighting circuits, consisting of
multiplying D/A converters (MDAC) weight the analog signals from the taps according to the
digital tap weight words. The prototype D/A PTF referred to in this paper consists of a 64 —tap
ACT delay line with a SAW frequency of 360 Mhz, 64 MDAC circuits which utilize signed
magnitude word format for the tap weights, and a 64X6 static random-access tap weight store,
with an address decoder. The tap weight word length is six bits, including the sign bit, so that
the smallest number variation that can be represented corresponds to 3—12-, that is, one LSB of the
tap weight range [1]. This internal quantization of the filter coefficients, introduces movement in
the nominal position of the zeros of the FIR filter, which results in errors in the frequency

response.

Nonuniformities in the active devices result in nonuniformites in the tap weights, which are
manifest as errors i the frequency response, although ostensibly, the MDAC weighting circuits
eliminate these errors to first order. In practice, the MDAC circuits introduce errors in the
actual weights due to parasitic capacitances in the C/2C ladder circuits, parasitics in the active
switches. and the finite impedances of significant summing buses. Identification and

compensation for these errors are feasible if the MDAC performance is carefully mndeled [1].

In addition, limitations in tap weight uniformity is due to variations in component parameters
among all the MDAC circuits, and to ACT delay line nonuniformities. According to [1], the
latter can be compensated for, if 2 memory-mapping algorithm is used with a small reduction in

the overall tap programming range.

11I. DESIGN OF FINITE WORDLENGTH FIR DIGITAL FILTERS

a. An adaptive modeling scheme is first utilized to design optimal finite wordlength FIR digital
filters assuming no tap weight circuitry defects. The problem is to design an FIR filter, whose
coefficients are quantized to a specified finite word length, which best approximates the
frequency response of an ideal filter whose coefficients have infinite precison. Other methods

have been proposed (2]—(6], {19], but, with the exception of {2], the methods are effective only




for filter lengths of ten or less.

The method proposed in (2] yields the optimal (in the Chebyshev, or min-max sense) finite
wordlength FIR filter coefficients using mixed-integer programming methods to solve the
discrete optimization problem. Besides its complexity, the method is very costly in terms of the
amoun: f computer time required [2]. However, it is reported to be the only general way of
obtaining the optimal finite-wordlength coefficients {2]. The idea behind many of these methods
is to obtain the optimal finite-precision coefficients from an iterative process in which the
infinite-precision coefficients are successively rounded (2], [19]; the finite-wordlength restriction is
not incorporated into the filter design procedure and thus the solution obtained may be
suboptimal [2]. However, the proposed adaptive modeling scheme for the optimal design of
finite-wordlength FIR digital filters incorporates the finite wordlength restricition as part of the
filter design procedure. Although optimality of the coefficients cannot be proved because the
finite-precision implementation of the LMS algorithm may deviate from the infinite-precision
performance, the method offers noticeable improvement over the truncated infinite-precision

coefficients.

This problem of finding a suitable FIR filter with quantized weights may be modeled as an
adaptive identification problem and the same basic architecture may be used [12]—{14]. The
architecture, depicted in Figure 1, consists of an adaptive filter and a plant which are
simultaneously driven by the same input signal x(k). The output of the plant, d(k), supplies the
ideal or desired response for the adaptive filter; the subscript k denotes the discrete-time sample
index. In the identification problem. the plant is usually unknown and the adaptive filter is
used to find a linear model which represents the best fit to the unknown plant; in the case of a

dynamic plant the tap weights of the model are time varying [14].

In the present problem, the plant is a known entity; it is the ideal filter whose coefficients have
infinite-precision. These coefficients, which constitute the filter’s unit-sample response, may be
obtained using any FIR filter design technique and are assumed to be exact to within computer
accuracy. However, because optimal (Chebyshev) design is the focus of this research, the Parks-
McClellan algorithm is exclusively used [9], [16]. The plant is not dynamic since the filter
coefficients are not time-varying. The adaptive filter is a finite wordlength FIR filter which
attempts to adjust its coefficients to closely approximate the ideal filter response. Because the
coefficients are quantized, however, the rule for the updating the adaptive filter weights is
implemented digitally; that is, the internal algorithmic calculations are quantized to a finite

precision (7], (14]. Thus, the scheme attempts to find the finite-precision model which represents
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the best fit to the infinite-precision filter. While in most finite-precision realizations the input
samples are aiso quantized to a finite precision, in the present scheme only the adaptive filter
weights are quantized: the samples of the input signal x(k), the ideal, or desired response d(k)
and the adaptive filter output y(k) are all assumed to be infinite-precision quantities as implied

by Figure 2.

The basic architecture of Figure 1 has been successfully employed by Widrow and Stearns to
synthesize infinite-precision FIR filters from a set of design specifications {12], {13]. There are
some pronounced differences between the infinite-precision synthesis scheme of Widrow and
Stearns and the finite-wordlength design proposed here. In the former scheme, the plant, which
is designated as a “pseudo filter,” is generally not physically realizable; its unit-sample response
is not known; only the output response of the pseudo filter to a sinusoidal input is known. This
is to be contrasted with the proposed algorithm for finite-wordlength design in which the plant
is a filter whose unit-sample response (which is exact to computer accuracy) is specified: thus,

the output of this ideal filter to a given sinusoidal input is also known.

A more salient difference between the two schemes is that the internal calculations are assumed
to be of infinite-precision in the former scheme: that is an analog model is assumed; in the latter

scheme, the adaptive algorithm is implemented digitally.

The finite-precision form of the LMS algorithm, as it applies to the design of finite wordlength
FIR filters is now presented [7], [14]. Referring to Figure 2, the kth output sample of the

adaptive filter, y(k), may be computed from
y(k)=wg (k)x(k) (1)

where the character T denotes the transpose operator and wq(k) is the tap weight vector, an
N—vector of time-varying weights; the subscript q indicates number quantization. That is,
wq(k)z[wm(k),wzq(k),...,qu(k)]T. The tap-input vector x(k), is an N-vector consisting of
the last N samples of the input signal, given by x(k)={x(k),x(k—1), ... ,x(k—N+l)]T

The adaptive filter employs the LMS algorithm, which attempts to adjust the weights such that
the output of the adaptive filter y(k), and the desired signal d(k) are equal. The error incurred
in this process for the kth sample is

e(k)=d(k) - y(k) (2)

<




The finite-precision, least-mean square (LMS) algorithm is thus summarized by equation (3) and

equation (4) below (7], [14].
e(k)=d(k) ~wd x(k) (3)

wa(k+=wq (k) +Qf we(l)x(k)} (4)

In equation (4), Q{ } is an operator denoting an ideal quantizer and g is a scalar quantity
sometimes referred to as the adaptation constant. Only the product representing the gradient
vector estimate ue(k)x(k) is quantized before addition to the tap weight accumulator to form
the current tap weight; the starting weight values in equation (4) are the truncated coefficients.
This is a reasonable choice, since the optimal finite wordlength coefficients are not expected to

deviate very much from the truncated or rounded coefficients [2].

Normally, in a digital implementation, the input signal x(k), the desired signal d(k), and the
internal algorithm are all quantized to a limited precision [14]. However, in this particular
application only the internal algorithm for updating the weight vector is quantized. as indicated

by equation (4).

The LMS algorithm is known to be an unstable algorithm when implemented digitally [7]. That
is, the algorithm will not limit the maximum deviation from infinite-precision performance to
within f{inite bounds, potentially resulting in an overflow. Fortunately, numerical stability is
usually not an important property when an adaptive filter is used to determine an unknown
setting and then the weights are held fixed at that setting [7]. Since the FIR filter is not a time-

varying system, use of the finite-precision LMS algorithm is not precluded.

In the finite-precision implementation, the adaptation constant must be carefully chosen in
order to minimize the deviation between the finite-precision and infinite-precision performance.
Several authors have studied the choice of the adaptation constant; it is shown in [7]—(8], that
increasing the adaptation constant g minimizes the deviation {rom infinite-precision performance
although decreasing u below a certain value actually increases the mean-square prediction error.
This behavior is different from the infinite-precision case where decreasing u is known to
improve performance when there is no change or a slowly varying relationship between x(k) and
d(k). Compounding the problem of the choice of u in the finite-precision case is the conflicting
fact that increasing p can also magnify numerical errors. Thus, there is some tradeoff to be

made in the choice of u, which generally involves some measure of “cut and try” (7).
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b. The adaptive filter and the ideal filter are simultaneously excited by a sum of M sinusoids,
[12]—[13], whose radian frequencies w T=2xf,/fs (i=1....,}) consist of uniformly spaced points
around the unit circle between [0, 7] radians. While it is not necessary that the points be
uniformly spaced, this is a convenient choice which works well in the present scheme. The
sampling period T is normalized to unity for convenience; thus the Nyquist frequency is 7 r/s,

or 0.5 hz. The kth sample of the inout signal x(k), is given by

M
x(k)= e sin2mfik (5)

=1

[ncreasing the amplitude ¢, of the ith sinusoid has the offect of more tightly holding the desired
response at the ith frequency which might be desirable if unsatisfactory results are obtained [12].
In the present application, setting all of the ¢, equal so that each sinusoid has equal amplitude is

usually satisfactory.

The signal x(k) must be properly scaled so that the quantizer input, i. e. the quantity in
brackets in equation (4), is confined to the interval [—1, +1]. Since x(k) is a deterministic
(sinusoidal) signal, ensuring that the range of x(k) is confined to this interval is easily
accoraplished. Initially all the ¢, are set according to the weighting desired (in this case unity),
and the resulting range of x(k) is observed. If the observed range of x(k) is confined to the

interval [—R, R], x(k) is properly scaled by dividing all the ¢, by R.

The ideal filter response d(k), at time k, contains the same terms as the input signal, but each
individual sinusoid is scaled in amplitude and shifted in phase by amounts ¢, and 6,
respectively, which are the amplitude and phase of the infinite-precision filter measured at the

ith frequency. Therefore, d(k) is given by

M
d(k)=) _coysin(2nfk+6;) (6)
=1

If there is to be no error due to overflow, the range of d(k) must also be confined to the interval
[—=1,+1); this is a common assumption in fixed—point analysis [8]. This is not a problem
because the digital filter obtained via the Parks-McClellan algorithm is nonamplifying; that is,

the output power is less than or equal to the input power and [h(n)| <1 for all n [2].




The triplet (f;, a,, 8,) is seen to characterize the ideal response. This triplet is obtained as

follows.

(1) An FIR filter of length-N is designed using the Parks-McClellan algorithm [9]. [16], to give
the infinite-precision unit-sample response h(n) of length-N. Since optimal Chebyshev design is
the focus of this research, the Parks-McClellan algorithm is used. However, any of the many
other available design techniques [10], [16), such as frequency-sampling design, least-squared

error frequency-domain design, or window-based designs could be used instead.

(2) An L-point FFT of h(n) is taken where L>N; the relationship between L and N will soon
become evident. It is well known that the FFT is simply an efficient method for computing the
DFT. The L-point DFT may be interpreted as samples of the frequency response H(ejw>
evaluated at L uniformly spaced frequency points w on the unit circle, ranging from zero to 27,

or franging from zero to unity [16]. That is.

_yfJwi
H(I)_H(e )Id an(io) 1<i< L 1)
1=

Clearly, from equations (5) and (6), only M frequencies in the fundamental range {0, 0.5] are of
interest. Thus, if L is even, only the first M=%+1 complex DFT samples of the L-point DFT
are used; the last sample corresponds to the Nyquist frequency. If L is odd. only the first M

=(L+1) DFT samples are used; note that the last sample does not correspond to the Nyquist
2

frequency. Since the sampling frequency is normalized to unity, the sample (bin) number ! and

the actual frequency are related by

= 1<IS M (8)

where M= %‘+1 (L even) and M= (i';-—l) (L odd) and the bins are numbered starting with

unity. The amplitude and phase of H(/) are specified at these M frequencies according to
a/=|H() 1<is M (9)
8,=arg H{{) 1<« M (10)

If M=N frequency samples are used, which require an L=(2N—2)-point DFT (N even) or an

L=(2N—1)-point DFT (N odd), the finite-precision LMS algorithm is observed to render

unsatisfactory results. Ostensibly, a larger number of frequency samples is needed to
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satisfactorily describe the magnitude and phase characteristics of the ideal filter. By increasing
the number of frequency samples to M=2.V, the algorithm consistently yields very good results.
This requires an L=(4N—2)-point DFT (N even) or an L=(4N—1)-point DFT (N odd). Thus.
the unit-sample response of the ideal, infinite-precision filter of length N is padded with 3.v—2
zeros (N even) or 3N—1 zeros (N odd) prior to taking the DFT, yielding 2N equally spaced
frequency samples between [0,0.5]. Because of the particular FFT algorithm used to compute

the DFT, the filter length N is not restricted to be a power of 2.

The Parks-McClellan algorithm may force the ideal filter response to zero at either {=0.0 or
f=0.5 [16]. In the latter case, it may be desirable to utilize the odd, L=(4N—1)-point DFT;

otherwise, there will automatically be one less sinusoidal term in equation (6).

IV. EUNCTION AND OPERATION OF THE QUANTIZER

a. The ACT PTF cannot internally represent the filter coefficients with infinite-precision or an

unlimited number of bits. To model the quantization operation on the computer, each infinite-
precision coefficient value (represented by a floating-point number on the computer) is converted
into a second, floating-point number equal to the finite-precision value closest to it, that can be
represented in a signed magnitude, fixed-point number system having 5—1 bits (excluding the
sign bit). The finite-precision values that can be represented in the number system are called
quantization levels; the quantization step Q, is the distance between two adjacent quantization
levels: Q=2—(b_1)
(18], {17], (21).

corresponds to a binary “1” at the least significant register position [11],

The ACT PTF represents the tap weight vaiues using a signed magnitude, fixed-point number
representation [1]. The optimum infinite-precision coefficients are assumed to be truncated to a
wordlength of 5—bits (b=6); this determines the quantizer characteristic used in the computer
simulation. Note the magnitude of the error after truncation is generally more severe than after
rounding; in the former case it is confined to the interval [—Q, Q] while in the latter case it is

confined tc the interval [—%, %], (15) , [17].

V. MODIFICATION OF THE LMS ALGORITHM TQ ENSURE LINEAR PHASE

The LMS algorithm may not always yield filters with linear phase even if the frequency response

of the optimal, infinite-precision filter possesses the linear phase property. However, the
algorithm may be modified so that the coefficients are adjusted symmetrically, thus ensuring

filters with linear phase, as follows [12], {22].




Let I =[§], denote the number of symmetric weight pairs. where N is the filter length. and [x] <
denotes the largest integer less than or equal to x. For an odd length filter, the middle weight is

updated according to <

wl("ff;ll)qzwl(‘l_*_l)q+ue(k)x(k—l) (11) .

while the lower weights are updated according to

k+1

w(l_l_H)q:wt“_l+l)q+‘lzue(k){x(k—l+ I)+x(k-—[—1)} 1=12,..1 (12)

. k+1 _Jk+1 -
then the upper weights are set equal to w(I+l+l)q—w(I—l+l)q =12,

Similarly, for an even length filter, the lower weights are updated according to

wl((;'__ll+l)q=wt‘l_l+l)q+%ue(k){x(k-—l+ D+x(k=1-i1)} =121 (13)

. k+1 _ k+1 —
then the upper weights are set equal to w(I+I)q"w(I—l+l)q 1_'1.2,...,1

The components of the finite-precision tap weight vector are designated by the g subscript, while

the sample index k is indicated by a superscript to simplify the otherwise cumbersome notation.

VI. TESTING OF THE FINITE WORDLENGTH FIR FILTER DESIGN ALGORITHM

a. Six filters of various lengths and types were designed using the Parks—McClellan algorithm
(9], [16], to test the effectiveness of finite-wordlength FIR filter design based on adaptive
modeling without tap weight circuitry defects. Using the truncated coefficients as the starting
weights, the corresponding finite-wordlength FIR filters were designed using the proposed
adaptive modeling algorithm. The optimal infinite-precision coefficients, the truncated
coefficients and the optimal finite-wordlength coefficients obtained using the proposed algorithm

are recorded for each test filter, and the magnitude responses are compared.
b. A length-21 Low-pass Filter
FINITE IMPULSE RESPONSE (FIR)

LINEAR PHASE DIGITAL FILTER DESIGN
REMES EXCHANGE ALGORITHM
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FILTER LENGTH = 21

ssxxx UNIT-SAMPLE RESPONSE sx#x»

h(
h(
h(
h(
h(
h(
b(
h(
h(

)= .18255444E-01 = h( 21)
2) = .55136724E-01 = h( 20)
3) = -.40910738E-01 = h( 19)
4) = .14930869E-01 = h( 18)
5) = .27568590E-01 = h( 17)
6) = -.59407810E-01 = h( 16)
7) = .44841838E-01 = h( 15)
8) = .31902670E-D1 = h( 14)
9) = -.14972545E+00 = h( 13)

h( 10) = .25687238E+00 = h( 12)
h( 11) = .69994063E+00 = h( 11)

Band 1
Lower band edge 0.0
Upper band edge 0.33
Desired value 1.0
Weighting 1.0
Deviation 0.0988697
Deviation in dB 0.8189237

Band 2

0.37

0.50

0.0

1.0

0.0988697
-20.0987384

The truncated, 6-bit coefficients, multiplied by 25= 32 are

h( 1)
h( 2)
h( 3)
h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)
h(10)
h(11)

= 0 = h(21)
= 1 = h(20)
=-1 = h(19)
= 0 = h(18)
= 0 = h(17)
=-1 = h(16)
= 1 = h(15)
= 1 = h(14)
=-4 = h(13)
= 8 = h(12)
= 22 = h(11)
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The optimal, 6-bit coefficients, multiplied by 25 = 32 are

h1) = = h(21)
h( 2) = h(20)
h(3) = -1 = h(19)
h{(4) = 0 = h(18)
h(5) = 1 = h(17)
h(6) = -2 h(16)
h(7) = 1 = h(15)
h(8) = 1 = h(l4)
h(9) = -5 = h(13)
h(10) = 8 = h(12)
h(11) = 22 = h(11)

o o
!

I

ao

o~
[3%]

It is interesting to note the proximity of the optimal coefficients to the truncated coefficients. A
comparison of the magnitude responses is shown in Figure 3. The LMS convergence is noted by

plotting the error e(k) versus the iteration number; this is shown in Figure 4.

c. A length-20 Low-pass Filter

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMES EXCHANGE ALGORITHM

FILTER LENGTH = 20

sssss UNIT-SAMPLE RESPONSE ssex+
h( 1) = .48411223E-01 = h( 20)
h( 2) = .13537383E-01 = h( 19)
h( 3) = -.39344038E-01 = h( 18)
h( 4) = .53151826E-01 = h( 17)
h( 5) = -.31608274E-01 = h( 16)
h( 6) = -.25162720E-01 = h( 15)
h( 7) = .83330645E-01 = h( 14)
h( 8) = -.86372217E-01 = h( 13)
h( 9) = -.34074439E-01 = h( 12)
h( 10) = .56718866E+00 = h( 11)
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Lower band edge
Upper band edge
Desired value
Weighting
Deviation

Deviation in dB

Because the frequency response of this filter is forced to be zero at f=0.5, an odd (4N—1)= 79

Band 1

0.0

0.33

1.0

1.0
0.0.0981161
0.8129651

Band 2

0.37

0.50

0.0

1.0

0.0981161
-20.1651949

point DFT is used for the reason explained in section III.

The truncated. 6 —bit coefficients, multiplied by 25 = 32, are

h( 1)
h( 2)
h( 3)
h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)
h(10)

The optimal, 6-bit coefficients, multiplied by

h( 1)
h( 2)
h( 3)
h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)
h(10)

2

= 1 =h(20)
= 0 =h(19)
= -1 =h(18)
= 1 =h(17)
= -1 =h(16)
0 =h(15)
= 2 =h(14)
-2 =h(13)
= -1 =h(12)
= 18 =h(ll)
S= 32, are
= | = h(20)
0 = h(19)
= -1 = h(18)
= 2 = h(17)
= -1 = h(16)
= -1 = h(15)
= 2 = h(14)
= -3 = h(13)
= -1 = h(12)
= 18 = h(l1)
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A comparison of the magnitude responses is shown in Figure 5. A plot of the error e(k) versus

the iteration number is shown in Figure 6.

d. A length-21 pa..dpass Filter

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMES EXCHANGE ALGORITHM

FILTER LENGTH = 21
sxx23 UNIT-SAMPLE RESPONSE #*x«x
h( 1) = .46678024E-02 = h( 21)
h( 2) = .96758919E-02 = h( 20)
h( 3) = -.90181293E-01 = h( 19)
h( 4) = -.25750540E-01 = h( 18)
h( 5) = .45590497E-01 = h( 17)
h( 6) = -.10308870E-01 = h( 16)
h( 7) = .11038485E+00 = h( 15)
h( 8) = .12596292E-01 = h( 14)
h( 9) = -.28589705E+00 = h( 13)
h( 10) = -.17343520E-01 = h( 12)
h( 11) = .38577729E+00 = h( 11)

Band 1 Band 2 Band 3
Lower band edge 0.0 0.18 0.37
Upper band ecge 0.14 0.33 0.50
Desired value 0.0 1.0 0.0
Weighting 1.0 1.0 1.0
Deviation 0.1073546 0.1073546 0.1073546
Deviation in dB -19.3835875 0.8857342 -19.3835875

The truncated, 6-bit coefficients, multiplied by 25 = 32 are

h(l) = 0
h(2) = 0

h(21)
h(20)
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h(3) = -2 = h(19)

h(4) = 0 = h(18)
h(5) = 1 = h(17)
h(6) = 0 = h(l16)
h(7) = 3 = h(15)
h( 8) 0 = h(14)

h(9) = -9 = h(13)
h(10) = 0 = h(12)
h(11) = 12 = h(11)

The optimal, 6-bit coefficients, multiplied by 2°> = 32, are

h(1) = 0 = h(21)

h(2) = 1 = h(20)
h(3) = -3 = h(19)
h(4) = -1 = h(18)
h(5) = 2 = h(17)
h(6) = 0 = h(16)
h(7) = 4 = h(15)
h( 8) 1 = h(14)

h(9) = -9 = h(13)
h(10) = 0 = h(12)
h(11) = 13 = h(11)

A comparison of the magnitude responses is shown in Figure 7. A plot of the error e(k) versus

the iteration number is shown in Figure 8.
e. A length-32 (Wide-band) Bandpass Filter
FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN

REMES EXCHANGE ALGORITHM

FILTER LENGTH = 32
ss22% UNIT-SAMPLE RESPONSE s#xs«
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h(
h(
h(
h(
h(
h(
h(
h(
h(

1) = -.48581465E-02 = h( 32)
2) = -.34469004E-02 = h( 31)
3) = .72525650E-02 = h( 30)
4) = .13274785E-02 = h( 29)
5) = .16371012E-01 = h{ 28)
6) = .10639032E-01 = h( 27)
7) = -.29763351E-01 = h( 26)
8) = -.31177921E-02 = h( 25)
9) = -.36395655E-01 = h( 24)

h( 10) = .74851950E-02 = h( 23)
h( 11) = .82077622E-01 = h( 22)
h( 12) = -.81893674E-02 = h( 21)
h( 13) = .73856838E-01 = h( 20)

h( 14) = -.11670402E+00 = h( 19)
h( 15) = -.30804001E400 = h( 18)

h( 16) = .31369272E+00 = h( 17)
Band |
Lower band edge 0.0
Upper band edge 0.1
Desired value 0.0
Weighting 1.0
Deviation 0.0056256
Deviation in dB -44.9966866

Band 2
0.20

0.35

1.0

1.0
0.0056256
0.0487261

The truncated, 6-bit coefficients, multiplied by 25= 32 are

h( 1)
h( 2)
h( 3)
h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)

|
o © © © © © © o

1
L]
—
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= h(32)
= h(31)
= h(30)
= h(29)
= h(28)
= h(27)
= h(26)
= h(25)
= h(24)

Band 3

0.4250

0.50

0.0

1.0

0.0056256
-44.9966866
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h(10) = 0 = h(23)
h(1l) = 2 = h(22)
h(12) = 0 = h(21)
h(13) = 2 = h(20)
h(14) = -3 = h(19)
h(15) = -9 = h(18)
h(16)= 10 = h(17)

The optimal, 6-bit coefficients, multiplied by 2% = 32, are

h(1) = 0 = h(32)
h(2) = 0 h(31)
h(3) = 0 h(30)
hid) = 0 h(29)
h( 5) 0 h(28)
h(6) = 0 h(27)
h(T) = 0 h(26)
h(8) = 0 h(25)
h(9) = -1 h(24)
h(10) = 0 h(23)
h(11) = 2 h(22)
h(12) = 0 h(21)
h(13) = 3 h(20)
h(14) = -4 = h(19)
h(15) =-11 = h(18)
h(16) = 11 = h(17)

While the algorithm yields some improvement as seen from Figure 9, better results might be
anticipated if the 10 truncated coefficients with value zero were adjusted to a non-zero value by
the adaptive algorithm. A comparison of the magnitude responses is shown in Figure 9. A plot

of the error e(k) versus the iteration number is shown in Figure 10.

f. A length-64 (Narrow-band) Bandpass Filter

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
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REMES EXCHANGE ALGORITHM

FILTER LENGTH = 64
ssxtx UNIT-SAMPLE RESPONSE sxss+
h{ 1) = -.63719952E-02 = h( 64)
h( 2) = .12366605E-01 = h( 63)
h( 3) = .90891666E-02 = h( 62)
h( 4) = -.52737236E-02 = h( 61)
h( 5) = -.65397498E-02 = h( 60)
h( 6) = .73926853E-02 = h( 59)
h( 7) = .72776156E-02 = h( 58)
h( 8) = -.66523440E-02 = h( 57)
h( 9) = -.60031978E-02 = h( 56)
h( 10) = .48160733E-02 = h( 55)
h( 11) = .32913051E-02 = h( 54)
h( 12) = -.12530101E-02 = h( 53)
h( 13) = .11994049E-02 = h( 52)
h( 14) = -.40770610E-02 = h( 51)
h( 15) = -.74582934E-02 = h( 50)
h( 16) = .11142890E-01 = h( 49)
h( 17) = .15321170E-01 = h( 48)
h( 18) = -.19652596E-01 = h( 47)
h( 19) = -.24457549E-01 = h( 46)
h( 20) = .29206388E-01 = h( 45)
h( 21) = .34321159E-01 = h( 44)
h( 22) = -.39200157E-01 = h( 43)
h({ 23) = -.44286929E-01 = h( 42)
h( 24) = .48936060E-01 = h( 41)
h( 25) = .53609453E-01 = h( 40)
h( 26) = -.57691106E-01 = h( 39)
h( 27) = -.61579415E-01 = h( 38)
h( 28) = .64760943E-01 = h( 37)
h( 29) = .67547088E-01 = h( 36)
h( 30) = -.69580477E-01 = h( 35)
h( 31) = -.71032365E-01 = h( 34)
h( 32) = .71727105E-01 = h( 33)
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Lower band edge
Upper band edge
Desired value
Weighting
Deviation

Deviation ip dB

Band 1

0.0

0.2125

0.0

1.0

0.0217903
-33.2347400

Band 2
0.2375
0.2625

1.0

1.0
0.0217903
0.1872354

fI'fle truncated, 6-bit coefficients, multiplied by 925= 32 are

h( 1)

h(2) =
h(3) =

h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)
h(10)
h(11)

h(12) =
h(13) =
h(14) =
h(15) =

h(16)

h(17) =

h(18)
h(19)
h(20)
h(21)
h(22)
h(23)
h(24)
h(25)
h(26)

1-21

o o O © O o 0 O O 0 O o o 0 o o o o o 9

= h(64)
= h(63)
= h(62)
= h(61)
= h(60)
= h(59)
= h(58)
= h(57)
= h(56)
= h(55)
= h(54)
= h(53)
= h(52)
= h(51)
= h(50)
= h(49)
= h(48)
= h(47)
= h(46)
= h(45)
= h(44)
= h(43)
= h(42)
= h(41)
= h(40)
= h(39)

Band 3

0.2875

0.50

0.0

1.0

0.0217903
-33.2347400
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= h(38)
= h(37)
= h(36)
= h(35)
= h(34)
= h(33)

il

25 = 32, are

)
—_ - O O O O 0 O O O 0 O o o o O ©
I

= h(64)
= h(63)
= h(62)
= h(61)
= h(60)
= h(59)
= h(58)
= h(57)
= h(56)
= h(55)
= h(54)
= h(53)
= h(52)
= h(51)
= h(50)
= h(49)
= h(48)
= h(47)
= h(46)
= h(45)
= h(44)
= h(43)
= h(42)
= h(41)
= h(40)
= h(39)
= h(38)

)
—
I

L} + [} L}
[\ [ V] ~ (3] — —_—— —

1-22




h28) = 2 = h(37)
h(20) = 2 = h(36)
h(30) = 2 = W(35)
h(31) = -2 = h(34)
h(32) = 2 = h(33)

In this example, the adaptive algorithm does a much better job of deaiing with the zero
coefficients than in the wideband length-32 bandpass filter case. Indeed, in the present case, 10
truncated coefficients which are zero in value, are adjusted by the algorithm to take on a non-
zero value. A comparison of the magnitude responses is shown in Figure 11. A plot of the error

e(k) versus the iteration number is shown in Figure 12,

g. A length-31 Bandreject Filter

FINITE IMPULSE RESPONSE (FIR)
LINEAR PHASE DIGITAL FILTER DESIGN
REMES EXCHANGE ALGORITHEM

FILTER LENGTH = 31
sssss UNIT-SAMPLE RESPONSE +xxxs
h( 1) = .35182726E-05 = h( 31)
h( 2) = -.26521932E-01 = h( 30)
h( 3) = .35114622E-04 = h( 29)
h( 4) = -.10156000E-04 = h( 28)
h( 5) = -.22336191E-04 = h( 27)
h( 6) = .44154967E-01 = h( 26)
h( 7) = -.66720404E-04 = h( 25)
h( 8) = .45685611E-04 = h( 24)
h( 9) = -.68394425E-05 = h( 23)
h( 10) = -.93469017E-01 = h( 22)
h( 11) = .97577121E-04 = h( 21)
h( 12) = -.82618001E-04 = h( 20)
h( 13) = .35329113E-04 = h( 19)
h( 14) = .31394833E+00 = h( 18)
h( 15) = -.77643091E-04 = h( 17)
h( 16) = .50010198E+00 = h( 16)
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Lower band edge
Upper band edge
Desired value
Weighting
Deviation

Deviation in dB

Band 1
0.0

0.1

1.0

1.0
0.0237675
0.2040268

Band 2

0.15

0.35

0.0

1.9

0.0237675
-32.4803274

The truncated, 6-bit coefficients, multiplied by 25= 32 are

The optimal, 6-bit coefficients, multiplied by

h( 1)
h( 2)
h( 3)

h( 9)
h(10)
h(11) =
h(12)
h(13)
h(14)
h(15)
h(16)

h( 1)

h( 2
h( 3
h( 4
h( 5
h( 6
h(7

)
)

)
)
)
)

= 0 = h(31)
= 0 = h(30)
= 0 = h(29)
= 0 = h(28)
= 0 = h(27)
1 = h(26)
= 0 = h(25)
= 0 = h(24)
0 = h(23)
= -2 = h(22)
0 = h(21)
= 0 = h(20)
= 0 = h(19)
= 10 = h(18)
= 0 = h(17)
= 16 = h(16)
25= 32, are
= 0 = h(31)
= -1 = h(30)
= 0 = h(29)
= 0 = h(28)
= 0 = h(27)
= 1 = h(26)
= 0 = h(25)
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0.42

0.50

1.0

1.0
0.0237675
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h(8) = -1 = h(24)
h(9) = 0 = h(23)
h(10) = -4 = h(22)
h(1l) = 0 = h(21)
h(12) = 0 = h(20)
h(13) = 0 = h(19)

h(l4) = 10 = h(18)
h(15) = 0 = h(17)
h(16) = 16 = h(16)

A comparison of the magnitude responses is shown in Figure 13. A plot of the error e(k) versus

the iteration number is shown in Figure 14.

VII. DESIGN OF FINITE WORDLENGTH FIR DIGITAL FILTERS WITH TAP WEIGHT
Cl ITRY DEFECT

a. The adaptive modeling scheme may also be utilized to design optimal finite- wordlength FIR
filters for the ACT analog transversal filter with tap weight circuitry defects. Because of these
defects, the ACT hardware may inaccurately represent the optimal finite-wordlength coefficient
values. The same algorithm used to design optimal finite-precision FIR filters (assuming no
tap-weight circuitry defects) may be used, with the following modifications. Equations (3) and

(4) of the finite-precision least-mean square algorithm must be modified according to
e(k)=d(k) —wx(k) (14)

w, (k+ 1)=Wd(k)+D{Q{pc(k)x(k)}} (15)

For computer simulation, equation (15) is interpreted as follows. The operator Q{ } transforms
the infinite-precision filter coefficients (represented by floating point numbers on the computer)
into a second set of floating point numbers (the quantized coefficients), equal in value to the
quantization level closest to the infinite-precision coefficient value. The defect operator D{ }
transforms these quantized coefficients into a third set of floating point numbers which are the
quantized coefficient values actually seen by the haraware. These are dubbed the defective
coefficients, and are denoted by the subscript d. The defective ACT hardware has the effect of
merely shifting some of the quantized coefficient values from one quantization level to an

entirely different level; the quant.zation step does not change.
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b. If the tap weight circuitry defects in the ACT programmable transversal filter occur
symmetrically, so as not to negate the symmetry of the filter coefficients as represented
internally by the ACT hardware, then equations (11), (12) or (13) can be employed in lieu of
equation (15) to ensure linear phase. The Q and D operators should be introduced in these
equations in the same manner as in equation (15) with the starting weights set equal to the

defective coefficients.

¢: Table 1 below lists the known defects in the ACT hardware (18]. Tap weights are numbered
starting with unity; the first bit denotes the most significant bit (MSB), the fifth bit denotes the

least significant bit; the sixth bit is reserved for the sign bit.

TABLE 1: Defective Tap Weights in the ACT (18]

Tap # Bit # Fault
35 5 (LSB) unknown
36 2 (MSB-1) always off
38 1 (MSB) always on
57 4 (MSB-3) doesn’t turn completely on
64 1 (MSB) always off
2n for n=1,..,32 5 (LSB) always off

Note that for filters with odd length (less than length 35), symmetry is always maintained;
however, because of the last defect in Table 1, symmetry is not maintained for any even-length
filter. Since all that is known about tap weight 57 is that it fails to turn on completely, it is

assumed to turn on halfway in the computer model.

VIIL. TESTING OF THE FINITE WORDLENGTH FIR FILTER DESIGN ALGORITHM
WITH TAP WEIGHT CIRCUITRY DEFECTS

a. The test examples are now used to assess the effectiveness of the proposed adaptive modeling
technique for the cancellation of errors due to tap weight circuitry defects in the ACT

programmable transversal filter.
b. A length-21 Low-pass Filter

The truncated, 6-bit coefficients, as represented internally by the ACT transversal filter with its

tap wei~ht ci.cuitry defects, multiplied by 25= 32 are
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h( 1)
h( 2)
h( 3)
h( 4)
h('5)
h( 6)
h( 7)
h( 8)
h( 9)

h(10) =

h(11)

(== T - T = N =1

= -4

8
22

= h(21)
= h(20)
= h(19)
= h(18)
= h(17)
= h(16)
= h(15)
h(14)
h(13)
= h(12)
= h(11)

il

The optimal, 6-bit coefficients, obtained using the adaptive algorithm in the presence of tap

weight circuitry defects, multiplied by 25= 32 are

h( 1)
h( 2)
h( 3)
h( 4)
h( 5)
h( 6)
h( 7)
h( 8)
h( 9)
h(10)
h(11)

1
2
-1
0
1

= -2

1
0
-5
8
22

= h(21)
= h(20)
= h(19)
= h(18)
= h(17)
= h(16)
= h(15)
= h(14)
= h(13)
= h(12)
= h(11)

A comparison of the magnitude responses is shown in Figure 15. A plot of the error e(k) versus

the iteration number is shown in Figure 16.

c. A length-20 Low-pass Filter

The truncated, 6-bit coefficients. as represented internally by the ACT transversal filter with its

tap weight circuitry defects, multiplied by 2°= 32 are

h( 1)
h( 2)
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h(3) = -1

h(4) = 0
h(5) = -1
h(6) = 0
h( 7) 2
h(8) = -2
h(9) = -1
h(10) = 18
h(11) = 18
h(12) = 0
h(13) = -2
h(14) = 2
h(15) = 0
h(16) = 0
h(17) = 1
h(18) = 0
h(19) = 0
h(20) = 0

Since the defects in the tap weight circuitry are such that the symmetry of the filter coefficients
is negated, strictly speaking equations (11), (12) or (13) no longer apply. Yet because these
equations are necessary to ensure linear phase filters they are used just the same, although the
finite wordlength coefficients obtained using them will not be optimal. These 6-bit coefficients,
obtained using the adaptive algorithm in the presence of tap weight circuitry defects, multiplied
by 2°= 32 are

h(1) = 2 = h(20)
h( 2) 1 = h(19)
h(3) = -2 = h(18)
h(4) = 2 =h(17)
h(5) = 0 = h(16)
h(6) = -1 = h(15)
h( 7) 2 = h(14)
h(8) = -3 = h(13)
h(9) = -2 = h(12)

h(10) = 18 = h(1l)
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A comparison of the magnitude responses is shown in Figure 17. A plot of the error e(k) versus

the iteration number is shown in Figure 18.

d. A length-21 Bandpass Filter
The optimal coefficient values of this particular filter are unaffected by the :ap weight circuitry
defects; therefore, it is not necessary to redesign the filter taking into .c . nt tap weight

circuitry defects.

e. A length-32 (Wide-band) Bandpass Filter
The truncated, 6-bit coefficients, as represented internally by the ACT transversal filter with its

tap weight circuitry defects, multiplied by 25= 32 are

h()= 0
h(2)= 0
h(3)= 0
h(4)= 0
h(5)= 0
h(6)= 0
h(T)= 0
h(8)= 0
h(9)= -1
h(10)= 0
h(11)= 2
h(12)= 0
h(13)= 2
h(14)= -2
h(15)= -9
h(16)= 10
h(17)= 10
h(18)= -8
h(19)= -3
h(20)= 2
h2l)= 0
h(22)= 2
h(23)= 0
h(24)= 0
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h(25)=
h(26)=
h(27)=
h(28)=
h(29)=
h(30)=
h(31)=
h(32)=

(=T - R - T — N — A — A - B~

Because the filter length is even, defects in the tap weight circuitry are such that the symmetry
of the filter coefficients is negated. strictly speaking equations (11), (12) or (13) no longer apply.
Yet because these equations are necessary to ensure linear phase filters they are used just the
same, although the finite wordlength coefficients obtained using them will not be optimal.
These 6-bit coefficients, obtained using the adaptive algorithm in the presence of tap weight

circuitry defects, mulitiplied by 25= 32 are

h(1l)= 0 = h(32)
h(2)= 0 = h(31)
h(3)= 0 = h(30)
h(4)= 0 = h(29)
h(5)= 0 = h(28)
h(6)= 0 = h(27)
h(7)= 0 = h(26)
h(8)= 0 = h(25)
h(9)= 0 = h(24)
h(10)= 0 = h(23)
h(11)= 2 = h(22)
h(12)= 0 = h(21)
h(13)= 4 = h(20)
h(14)= -3 = h(19)

h(15)= -10 = h(18)
h(16)= 12 = h(17)

A comparison of the magnitude responses is shown in Figure 19. A plot of the error e(k) versus

the iteration number is shown in Figure 20.
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f. A length-64 (Narrow-band) Bandpass Filter

The truncated, 6-bit coefficients. as represented internally by the ACT transversal filter with its

tap weight circuitry defects, multiplied by 25= 32

are
h( 1) =
h( 2)
h( 3)
h(4) =
h( 5)
h(6) =
h( 7)
h( 8)
h(9) =
h(10) =
h(11) =
h(12) =
h(13) =
h(14) =
h(15) =
h(16) =
h(17) =
h(18) =
h(19) =
h(20) =
h(21) = 1
h(22) = 0
h(23) = -1
h(24) = 0
h(25) = 1
h(26) = 0
h(27) = -1
h(28) =
h(29) =
h(30) =
h(3l) = -
h(32) = 2

c O o o o e o O oo oo < oo oo o 9o o @0 o o o

IIO (35 o

o
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h{33) = 2
h(34) = -2
h(35) = -2
h(36) = 2
h(37) = 2
h(38) = -17
h(39) = -1
h(40) = 1
h(41) = 1
h(42) = -1
h(43) = -1
h(44) = 1
h(45) =
h(46) =
h(47) =
h(48) =
h(49) =
h(50) =
h{51) =
h(52) =
h(53) =
h(54) =
h(59) =
h(56) =
h(57) =
h(58) =
h(59) =
h(60) =
h(61) =
h(62) =
h(63) =
h(64) =

O O O 0 O 0O O O o o o oo 0 o 0 0 © & o

Since the defects in the tap weight circuitry are such that the symmetry of the filter coefficients
is negated, strictly speaking, equations (11), (12) or (13) no longer apply. Yet because these

equations are necessary to ensure linear phase filters they are used just the same, although the
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finite wordlength coefficients obtained using them will not be optimal. These 6-bit coefficients,
obtained using the adaptive algorithm in the presence of tap weight circuitry defects, multiplied

by 2°= 32 are

h(1) = -7 = h(64)
h(2) = 2 =h(63)
h(3) = 4 =h(62)
h(4) = 4 =h(61)

h(5) =-13 = h(60)
h(6) = 8 = h(59)
h(7) = 3 = h(58)
h(8) =-18 = h(57)
h(9) = 12 = h( 56)
h(10) = -1 = h( 553)
h(11) = -5 = h( 54)
h(12) = -17 = h( 53)
h(13) = h( 52)
h(14) = -12 = h( 51)
h(15) = 10 = h( 50)
h(16) = 12 = h( 49)
h(17) = 20 = h( 48)
h(18) = -22 = h( 47)
h(19) = 31 = h( 46)
h(20) = = h( 45)
h(21) = 31 = h( 44)
h(22) = 12 = h( 43)
h(23) = -2 = h( 42)
h(24) = -27 = h( 41)
h(25) = 30 = h( 40)
h(26) = 2 = h(39)
h(27) = 31 = h( 38)
h(28) = 9 = h(37)
h(29) = 7 = h(36)
h(30) = -24 = h( 35)
h(31) = -8 = h( 34)
h(32) =-24 = h( 33)

I
—_
=

|

'
o
=
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A comparison of the magnitude responses is shown in Figure 21. A plot of the error e(k) versus

the iteration number is shown in Figure 22.

g. A length-31 Bandreject Filter
The truncated, 6-bit coefficients, as represented internally by the ACT transversal filter with its

tap weight circuitry defects, multiplied by 25= 32 are

h(1) = 0 = h(31)
h( 2) 0 = h(30)
h( 3) 0 = h(29)
h( 4) 0 = h(28)
h( 5) 0 = h(27)
h( 6) 0 = h(26)
h(7) = 0 = h(25)
h( 8) 0 = h(24)
h( 9) 0 = h(23)
h(10) = -2 = h(22)
h(1l) = 0 = h(21)
h(12) = 0 = h(20)

h(13) = 0 = h(19)
h(14) = 10 = h(18)
h(15) = 0 = h(17)
h(16) = 16 = h(16)

The optimal, 6-bit coefficients, obtained using the adaptive algorithm in the presence of tap
weight circuitry defects, multiplied by 2°= 32 are

h(1) = 0 = h(31)
h(2) = 0 = h(30)
h(3) = 0 = h(29)
h(4) = 0 = h(28)
h(5) = 0 = h(27)
h(6) = 0 = h(26)
h(7) = 0 = h(25)
h(8) = 0 = h(24)
h(9) = 0 = h(23)
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h(10) = -6 = h(22)
h(1l) = 0 = h(21)
h(12) = 0 = h(20)
h(13) = 0 = h(19)

h(14) = 10 = h(18)
h{15) = 0 = h(17)
h(16) = 16 = h(16)

A comparison of the magnitude responses is shown in Figure 23. A plot of the error e(k) versus

the iteration number is shown in Figure 24.

VIII. RECOMMENDATIONS:

a. In this work, an application of an adaptive modeling scheme (originally proposed by Stearns
and Widrow [12]—([13] for the synthesis of FIR filters), is implemented digitally to design
optimal, finite wordlength FIR filters. The algorithm is further modified to design optimal,
finite wordlength FIR filters for an ACT, programmable analog transversal filter with known
tap weight circuitry defects. However, in this case. the method is most effective only if the tap
weight defects occur symmetrically so as not to negate the symmetry of the filter coefficients as
represented internally by the ACT hardware. Furthermore, the digital algorithm may be used
to design optimal finite wordlength FIR digital filters directly from a specified set of frequency

response characteristics.

Although the method of mixed-integer programming is the only general way reported in the
literature for optimal finite-wordlength coefficients (2], the computational efficiency of the
proposed algorithm renders it useful for filter lengths that would ordinarily be precluded with
the former method. Indeed, the bulk of this work was done using only a desktop PC—XT clone,
equipped with a math coprocessor chip.

b. The present work has been restricted to the design of finite wordlength FIR digital filters. It
is recommended that the work be extended to include the design of stable lIR filters with finite
wordlength. Coefficient quantization is a far more serious problem in IIR filters, since an IIR
filter with infinite-precision coefficients, which is stable by design, may actually manifest itself
as an unstable filter when implemented in special purpose hardware. Of course, in both FIR
and [IR filters, coefficient quantizetion may result in appreciable deviation in the frequency

response from that obtained with infinite-precision coefficients [17].
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c. It is anticipated that the performance of the proposed algorithm would be much improved if
the number of bits used to represent the infinite-precision coefficients were increased. This
would probably reduce the number of “zero tap weights™ that are sometimes encountered when

using the algorithm.

Further improvement in performance might be realized if the single adaptive linear combiner

employed in the present work is replaced by a neural network.
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Abstract

Reliability prediction of microelectronic devices using the Finite Element Method requires accurate
estimation and control of the inherent finite element discretization error. This report details formal
mathematical approaches by which the finite element discretization error may be automatically
estimated in a computational environment, and the results of this assessment used to automati-
cally control this inherent numerical error. To this end, two new posteriori finite element error
estimators and automatic adaptive mesh generation algorithms were developed and implemented
into FORTRAN codes for 2-D automatic adaptive mesh refinement. Both methods assess the dis-
cretization error element by element by comparing the discontinuous finite element scalar function
with an improved piecewise continuous (C° continuous) scalar function obtained through postpro-
cessing of the finite element results. The two error estimators are distinguished from each another
by the manner in which the C° continuous scalar function is obtained. Results are presented for
2-D elasticity in which the effective stress (von Mises) is taken as the scalar function field and the
corresponding Lz norm has a distortional energy interpretation. Finally, the concept of adaptive ac-
curacy is introduced in a h-based adaptivity algorithm. Examples are presented which demonstrate

the effectiveness of the error estimation and control algorithms as implemented in a computational
system.
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1 Introduction:

The finite element method is the most widely used numerical method for obtaining approximate
solutions to partial or ordinary differential equations which govern complex engineering problems.
The Computer Aided Systems Engineering Branch (RBES) at Rome Air Development Center has
successfully employed the finite element method for reliability assessment of microelectronic com-
ponents ([1},{2]). Detailed finite element modeling and analysis of semiconductor chips, leads, weld
joints, etc., has yielded accurate predictions of the location and magnitude of critical stresses and
temperatures in the microelectronic component ([3]-[14]). Based on these results, failure modes
can be predicted and the mechanical reliability of the product assessed. While there is no sub-
stitute for statistical and empirical reliability prediction methods, such as those found in Military
Standard MIL-HDBK-217E, finite element analysis of microelectronic components can supplement
these reliability prediction methods by offering a deeper understanding of the physics of design-

related failure modes. With this insight the engineer can then make design changes to improve the

reliability of the device.

The finite element reliability prediction method is particularly useful as a reliability design tool for
proposed new technology or custom devices where one does not have the benefit of extensive (or
any) experimental data. Often, these devices are quite costly and time consuming to develop and
manufacture. It is critical, therefore, that design-related reliability problems be revealed and cor-
rected early in the prototype design phase, before expensive tooling and processing costs have been
incurred. Finite element analysis of the device can give the designer and engineer the knowledge

needed to make the best possible design decisions in the absence of hard experimental data.

However, reliability assessment via the finite element method has been greatly limited by the sub-
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stantial amount of labor-intensive work and finite element modeling expertise required for accurate
finite element analysis. Typically, it may take an engineer several weeks to build an initial detailed
finite element model of the microelectronic device on the computer. Moreover, the numerical re-
sults will often indicate critical regions of the device which must be remodeled in greater detail
to obtain an accurate solution for these regions. Accordingly, finite element reliability assessment
(FERA) is inherently an iterative, and currently a time-consuming, process. A flow diagram of this
process as implemented today is shown in Figure 1. Several iterations are usually required before
accurate results can be obtained. The shaded box indicates the various tasks involving significant
human interaction. Of these, the task of building geometric models and generating valid finite
element meshes are typically the most labor-intensive and time-consuming, although assessing the

mechanical reliability of the microelectronic device using the finite element resuits can also be a

cumbersome process.

The above discussion leads to the following observations. First, reliability predictions of micro-
electronic devices by the finite element method are meaningless unless the finite element analysis
itself is reliable. Second, reliable finite element analysis is inherently an iterative process. In the
absence of empirical data, a single analysis is clearly insufficient for guaranteeing sufficiently accu-
rate results. Lastly, the utility of the finite element method as a design and reliability prediction

tool is greatly limited by the inefficient, labor-intensive iterative process of analysis, refinement,

reanalysis, etc.

Obviously, there is a great need to automate this iterative process. Fortunately, research over
the past ten years has begun to address this problem through the development of various formal
algorithms for estimating the finite element discretization error and for automatically refining the

mesh based on these error estimates. Methods which estimate the finite element discretization




error based on the analysis results are called A-posteriori Error Estimators. The process of refining
the mesh either locally or globally based on a-posteriors error estimates is called Adaptive Mesh
Refinement. This report details the research involved in a one year project on automating the

process of converging on a sufficiently accurate finite element solution.

It should be noted that the process of actual mesh generation has been greatly facilitated by the
emergence of powerful automatic mesh generators which can now generate nonuniform meshes based
on specified mesh densities at specific points. The advent of these automatic mesh generators has

made automatic adaptive mesh refinement possible for finite element codes.

2 Objective

The objective of this research project is to signicantly improve and increase the accuracy and
efficiency of finite-element based reliability assessment of microelectronic devices. This can be ac-
complished by the development of formal error estimatioa and adaptive remeshing algorithms, the
implementation these algorithms into computer codes, and the interfacing of these codes with finite
element mesh generation codes, such as FASTQ, and finite element analysis codes, such as NISA2,
as shown in Fig. 3. In this manner much of the time-consuming manual effort required to converge
on an accurate finite element solution will be eliminated. Furthermore, the computational sytem
will provide the reliability engineer with important estimates of the accuracy of the numerical sim-

ulation. This will result in greater productivity and improved finite element reliability assessment

of microelectronic devices.

It should be noted that the objective of this research is consistent with a longterm objective of
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automated finite element reliability assessment. The proposed research is the first step needed to

achieve this longterm objective.

3 Related Work

In this section a brief sampling of related work in a-posteriori error estimators and adaptive mesh

refinement is presented. For a more comprehensive review the reader is referred to Shephard [15]

and Babuska et al. [16)].

Turcke and McNeice [17] were one of the first researchers to study the problem of assessing the
discretization error. The authors established some simple informal guidelines for using the strain
energy density function as a measure of the discretization error. In 1977 Melosh and Marcal [18]
proposed the “specific energy difference” (SED) method for assessing the discretization error. If
the solution has converged, then the strain energy differential between each element with a reduced
degree of freedom set (i.e. from the previous mesh) and the corresponding “same” element with a
higher degree of freedom set (i.e. from the current mesh) must be zero. Thus, this strain energy
differential is a p-based measure of the discretization error. It can a.lso_be viewed as an h-based
error analysis method if the corresponding “same” element actually represents a “set” of elements
obtained by subdivision of the element from the previous mesh. To avoid two separate analysis,
Melosh and Marcal argued that this strain energy differential between elements of different meshes
can be approximated from a single solution as the difference between the specific strain energy at
any noncentroidal point and at the centroid of the element. Along a similar line, Shephard [19] has
proposed an adaptive mesh refinement algorithm based on the strain energy density function and

its variation of values within the finite element mesh. Again, the discretization error is measured
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by the lack of uniformity in the strain energy density over the element volume.

Babuska and his associates have offered more mathematically rigorous, residual-based approaches
to error analysis. Babuska and Rheinboldt {20] derived error bounds for the energy norm of the
error based on the residual of the differential equation. Element error indicators were introduced
as a means of determining which elements must be refined. Mesh optimality is based on achieving
equal error indicators for all elements. Subsequent work continued to develop residual-based error

estimators and associated adaptive mesh refinement schemes ([21},[22}).

Other residual-based methods include the work of Kelly, Gago, and Zienkiewicz ([23],(24]). In
an attempt to reduce the computational burden involved in residual-based error estimates, the
authors proposed the use of special hierarchical shape functions. The hierarchical shape functions
essentially permit efficient p-based error estimates. However, a common fundamental problem of
all residual-based methods has been the difficulty of correlating the residual, as measured by an

integral norm, to the pointwise error in either the primary variable or its derivatives, such as stresses

in elasticity.

More recently, Zienkiewicz and his colleagues ([25}-[27]) have derived a new stress-based error
estimator and associated adaptivity algorithm. The method involves obtaining a global least squa.es
fit of the discontinuous (C® continuous) finite element stress field with a piecewise continuous (C!
continuous) stress field. The latter stress field is taken as an approximation to the true stress field,
and the difference between the two tensor fields, as measured by the energy or L2 norm, represents
an estimate of the discretization error. The authors invoke the asymptotic convergence rate of
displacement-based finite elements to correlate the norm of the error in the element stress field to

the finite element size, thereby deriving an adaptive element sizing function for the new mesh.
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Ainsworth et al [28] have shown that the Zienkiewicz and Zhu error estimator is effective and asymp-
totically exact provided that the exact stress boundary conditions are imposed on the higher order
stress field. However, imposition of exact stress boundary conditions for general muiti-dimensional
problems, while straightforward, involves additional computations. Cauchy stress components must
be transformed to boundary-based normal/tangential coordinate systems for all boundary finite el-
ements. Moreover, the order of the system of equations generated by the least squares fit problem
is, in general, larger than the original finite element system of equations. Thus, the algorithm is
computational intensive, unless the coefficient matrix for the least square fit problem is diagonal-
ized as recommended by Zienkiewicz and Zhu. The effect of this diagonalization or lumping of the
coefficient matrix on the effectiveness, accuracy, and convergence properties of the algorithm was

not been explored by Ainsworth et al.

4  Posteriort Error Estimators for h Refinement

To improve finite element based reliability predictions, the reliability engineer must be assured that
the approximate finite element solution has met specified accuracy requirements. In general, there

are three sources of error in finite element analysis:

¢ truncation and roundoff error: This error is inherent in any numerical method due to the
limited precision in which numbers can be represented on digital computers. Normally, this
error is insignificant in finite element analysis since computations are carried out in double
precision and material properties, loads, and geometry are known with far less precision.

¢ modeling error: This error is due to improper modeling assumptions, such as assuming a
fixed boundary condition when in fact the support is flexible. Practicing good engineering
judgement and verifying results against assumptions can minimize modeling errors.

¢ discretization error: This is the error specific to the finite element method due to the rep-
resentation of a continuous object and the field solution, such as the temperature distribution,
in a piecewise fashion using a finite number of elements. Increasing the number of elements,
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i.e. refining the mesh, decreases these errors, provided that proper elements are used. This

error is often the major source of inaccuracies in finite element analysis and is often the most
difficult to assess.

In this report we proposed and evaluated two new error estimators for measuring the finite element
discretization error. The error estimators are based on formal mathematical techniques applied to
the finite element analysis results. As such, they are termed posteriori error estimators. The new
error estimators and corresponding it h adaptive A-refinement algorithm are based on a generalized
scalar energy density field, or in the case of elasticity, on the effective von Mise’s scalar stress field.
The fundamental concept of these error estimators is similar to the error estimator proposed by
Zienkiewicz and Zhu [25] in that the error estimator is based on the comparison of a discontinuous
finite element quantity to an improved piecewise continuous (C! continuous) quantity. However,

there are some important distinctions which we will elaborate later.

The following notation convention is used throughout this paper. All vector quantities are enclosed
by curly braces {} and matrices by square brackets [], all nodal variables are represented by an
overbar, while finite element field variables, such as temperature distribution are indicated with an

overhat. The subscript e denotes an element quantity.

Let {6} denote the finite element stress tensor field which is, in general, discontinuous across
interelement boundaries. Let {o*} denote a C° continuous approximation to the true stress field.
An estimate of the solution error is given by the difference of these two sc fields. To obtain

an expression for {o°}, two methods were examined: The Least Squares Fit (LSF) Method and a

Statically Equivalent (SE) Method.




4.1 Least Squares Fit Method

To arrive at an expression for {0*}, Zienkiewicz and Zhu {25) imposed a weighted residual equality

on the stress error estimate, {E} = {¢*} — {7}:

[ N0} - o1av = (0} )

where [N,] is the matrix of interpolating polynomials associated with the {o*} stress vector field.
Following the standard finite element procedure used to formulate C° displacement fields, the C°
stress field is expressed in terms of unknown nodal values {7"} using known nodal interpolating

(shape) functions [N, }:

{0} = N ){7"} (2)

Eq. ( 1) represents a system of K - N equations, where K equals the number of Cauchy stress
components (i.e. 3 for 2-D, 6 for 3-D), and N is the number of nodes in the finite element model.

The least squares interpretation of this approach can be seen as follows. Let the functional II({o*})

denote the squared L, norm of the error estimate:

(o)) = [ (e} - (6})av @)

By virtue of Eq. (2), IT is a function of {7}, the unknown nodal values of the projected stress

field. By substituting for {o*} from Eq. (2), setting the variation of II to zero to minimize the

error, and algebraically manipulating, one can derive Eq. (1).

From Eqns. (1) and (2), {¢"} can be found to be

(0) = (NI [ (N7 (5)av Q)
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where
(1= [ WTINJav (%)

Zhu and Zienkiewicz have demonstated the effectiveness of this stress based error estimator, and re-
cently Ainsworth et Al. [28] have provided a deeper mathematical interpretation of the Zeinkiewicz

and Zhu error estimator. However, there are certain disadvantages of this method, namely

e computationally expensive, unless a diagonal approximation for (A] is employed.

e error norm estimates computed by the least squares method do not provide an upperbound

on the true error norms.

The least squares method, if fully implemented, is computationally expensive because the order of
the system of equations which must be factored and solved is 3N (2-D) or 6N (3-D), where N is
the number of nodes. In contrast, the order of the original finite element system of equations is
2N and 3N for 2-D and 3-D problems, respectively. Thus, the computational effort required for

computing an error estimate is actually greater than that required for computing the original finite

element displacement solution.

The lack of upperboundedness of the error norm estimate to the true error norm is a direct con-
sequence of the least squares fitting of the discontinuous finite element stress field. In general, in
highly stressed regions the finite element solution underestimates the stress field. Thus, the least
squares fit of the finite element solution does not improve the prediction of peak stresses, and the
error estimator, as measured by an integral norm, is less than the true error norm. Moreover, the
higher the discretization error, the greater this discrepancy between the estimated and true error

norms. This condition will result in slower convergence (i.e. more mesh refinement iterations)
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to an optimally refined mesh compared to that achieved by an error norm estimate which would

upperbound the true error norm.

The computational efficiency of the error analysis can be significantly improved if the error analysis
is based on a scalar function. In the following sections we present two new error estimators which
are both based on a scalar function of the gradients in the field variables. The work is presented
for elasticity problems in which the scalar function selected is the von Mises or effective stress.
However, the method can be applied to any scalar function which, in the finite element solution,
is discontinuous across interelement boundaries, and in which an improved scalar function is C°

continuous. For example, in thermal analysis, a logical scalar function is the thermal energy density

which is a function of the discontinuous heat fluxes.

In elasticity the effective or von Mises stress o, is a particularly attractive choice for four reasons:

1. It is based on the discontinuous finite element stress components.
2. A C° continuous oy field is generally an improved solution, although exceptions do exist.
3. All elasticity finite element codes must compute o, because of its failure-related significance.

4. The use of an failure-related stress function as a basis of error analysis permits accuracy
requirements to be tightly integrated to the stress state.

The last point should be emphasized. The Distortional Energy Failure Theory is based entirely
on von Mises stress function and is the most widely accepted failure theory for ductile materials.
A error estimator based on the von Mises stress function enables the error estimator to have
engineering sigmucance, and permits the concept of adaptive accuracy to be introduced. Typically,
an optimal mesh is defined as one which minimizes either the total error, as measured by an

integral norm, or produces a minimum uniform local relative error distribution for a fixed number
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of degrees of freedom. However, from a practical standpoint, an optimal mesh is one that offers a
sufficiently accurate solution, as specified by the user, in the critical regions of the design, while
allowing for less accurate solutions in less critical regions. With this definition of mesh optimality, a
dramatic reduction in the number of degrees of freedom in the refined mesh can typically be achieved
compared to a refined mesh in which the accuracy requirement is held constant throughout the
model. Obviously, special care must be exercised for problems involving large deflections, buckling,

eigenvalue extraction, etc. where local solution inaccuracies may have significant effects on global

finite element quantities.
In 3-D, the von Mises stress is computed from the Cauchy stresses as follows:

. 1 . . N . . . . *1/2
Gy = ﬁ [(a, - a!,)2 + (6y - or,)2 +(0:—-0:)" +6 (‘rf.y + ‘rf, + 1'3,)] (6)

Since d, is a function of the discontinuous finite element Cauchy stress components, von Mises
stress function will also exhibit interelement discontinuity. Thus, the discretization error E can be
measured by &, — o, where o} is a piecewise -.ntinuous von Mises stress field. Zienkiewicz and
Zhu’s least squares method used to obtain the piecewise continuous stress tensor field {¢*} can also

be applied to obtain an expression for o}:

[T @3 - 6 av = (0} @

where

o, = [No,]{7; (8)

It should be noted that Eq. (7) must be imposed independently on subdomains distinguished by

distinct material properties. This is in accordance with the fact that the effective stress may in
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reality be discontinuous across intermaterial boundaries. Thus, imposition of C° continuity across

these boundaries would violate physical principles and weaken the accuracy of the error estimator.

-

Eq. (7) is solved to yield
77 = (NouJAI ([ (Vo o0 )dv ©)

where

(4] = [N T Jav (10

Note that since o, is a scalar function, the matrix [A] to be inverted is of order N only. The
Cholesky decomposition and forward and back substitution of a symmetric system of equations of
order n involves (n? + n)/2 floating point operations (FLOPS) (29]. Thus, the ratio of FLOPS
required for obtaining the stress vector field {o°} to the FLOPS required for obtaining the scalar
function function o is approximately K2, where K equals 3 for 2-D and 6 for 3-D problems.
One may argue that this computational savings is offset to some extent by the 'LOPS required
to compute d, via Eq. {6). However, the engineering significance of o, dictates its computation

irrespective of any posteriori error analysis.

If a diagonal approximation for [A] is employed, then the FLOP ratio of the two methods is
approximately K. However, the theoretical effect of a diagonal approximation to [A)] on the error

estimator has yet to be explored.

Although the von Mises stress-based error estimator obtained by the least squares fit approach
provides a measure of the discretization error and is computationally efficient, it possesses one

notable disadvantage. It underestimates the peak von Mises stresses, and therefore the estimated
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error norms underestimate the true error norms for most critical analysis regions of the finite

element model. Ia the following section, we propose an alternative formulation for obtaining o}

and an improved error estimator. The two approaches will be compared in the Examples section.

4.2 The Statically Equivalent C° Stress Field Method

This method was initially proposed by Loubignac et Al. [30] to improve the estimation of peak

stresses. Modifications have been introduced by other researchers more recently ([31],{32]).

The static equilibrium equations are given by
(KI{D} - {R} = 0
where
(K= [ (BI" EYBlav
Thus

(J (BITENBld: (D) - {R} = 0

We note that
{6} = [EI[BI{D}

Therefore Eq. (13) also implies that

/V[B]T{{y}dV _{R)}=0

(11)

(12)

(13)

(14)

(15)

Thus, the discontinuous finite element stress field {d} satisfies static equilibrium by virtue of Eq.

(15). If {5} is replaced with a C? continuous stress field {c"}, Eq. (15) will no longer be satisfied
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and a residual will exist due to the disatisfaction of static equilibrium. Let

(R,) = /V (B]T (0" }dV = ; /V C[B]Z‘ {0")edV (16)

Comparing this with the applied load vector, the residual load vector {AR} is obtained. Thus, a
Newton-Raphson iteration algorithm may be employed to update nodal displacements and finite

element stresses until convergence, i.e. static equilibrium of the C° continuous {0°} field, is achieved

in some sense.

Ry = % [ 1B (e"Yiav ()

(AR} = {R} - {RY (18)
[K]{aD} = {AR} (19)
{DY*' = (D} +{ADY (20)
{5)3' = [EL(Bl{D} (21)

The C?° continuous stress field {o"} required in Eq. (17) may be obtained by simple nodal averaging
of {G} stresses (extrapolated from Gauss points) to obtain {G*} and then interpolating for {o*}
via Eq. (2). To adopt this method to our effective stress based error estimator, the {o*} stress

components can be used to directly compute ¢ via Eq. (6).

An appealing feature of this method is that the decomposed global matrix (K] used in the original
finite element analysis may be used for all Newton-Raphson iterations. Furthermore, this method

has also been observed to overestimate peak stresses with the magnitude of peak stress overestima-

tion being proportional to the coarseness of the mesh (i.e. higher discretization errors). Typically,




only a few iterations are needed before peak stresses are overestimated. Therefore, error estimations
based on o, computed by this method tend to be conservative (i.e. overestimate the true error)

for peak stress regions. This improves the convergence characteristics of the adaptivity algorithm

in these critical regions.

5 Assessing the Discretization Error

Ideally, one would like to control the discretization error in a pointwise sense, since the ultimate
objective of adaptive mesh refinement is to force the pointwise error in the finite element solution
to be acceptable throughout the domain. However, in practice, norms must be used to measure

the error element by element and modify the mesh accordingly.

The L, integral norm of a function f is given by

1£(z,9,2)ll2 = [ / f’(z,y,Z)dV]% (22)

We note that the projected field o is a C° continuous field which minimizes the L; norm of the
difference between o] and 6, over the entire domain. Therefore, a rather natural measure of the

estimated discretization error for element e, E(%g,) is:

1/2
IECaule = 16, = <o3lla = | [ (6 - a1y av] ()

Note that we have slightly modified our notation, using the pre-superscript e, instead of the sub-

script e, to donote an element quantity.

If the L, norm is normalized by dividing by V1/2 then it represents an integral root mean square
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(RMS) value of the function. Thus, an RMS measure of the element’s von Mises stress field is

RMS(°0,) = [( / V(‘a,‘,)de) /ev] % (24)

It is observed that the term in parenthesis in Eq. (24) is directly proportional to the element’s
distortional strain energy. Denoting the element’s distortional strain energy as *DSE, we have the

following relationships between the distortional strain energy, the RMS and L, norm of €o,:
*DSE x °V (RMS(°0.))* = [0, |I3 (25)

Accordingly, the L, norm of the element’s von Mises stress field is proportional to the square root
of the element’s distortional strain energy, and the RMS measure of the element von Mises stress

field is proportional to the square root of the element’s average distortional strain energy density.

Finally, a global RMS measure of the von Mises stress is given by

([ o2rav) 1v] : (26)

= L(Z /V =a;)2dv) /V]z (27)

Il

GRMS(o,)

e=1

1

(i =V(RMS(=a;))’) /V] ’ (28)

ex1

l

where m equals the number of elements. As before, we identify the term in large parenthesis in Eq.

(26) to be proportional to the total distortional strain energy (T DS E), yielding

TDSE « V(GRMS(a,))? = ||o.|I3 (29)
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6 Adaptive Mesh Refinement

An adaptive mesh refinement scheme is simply an algorithm by which the results (i.e. stress or
temperature distribution) of a finite element analysis can be used to remesh or refine the finite

element model to improve the level of accuracy of the solution. Adaptive meshing techniques can

be classified into three categories:

1. r Refinement: In this approach neither the connectivity of the finite element mesh or the
order of the finite elements is changed. The new mesh contains the same number of nodes,
elements, and nodal connectivity used to define each element. However, the nodal locations
are moved to obtain a more optimal solution. The repositioning of the nodes may be based

on a local error estimate or on the minimization of the total potential energy with respect to
the nodal coordinates.

2. h Refinement: This is the most common type of mesh refinement scheme. It is often
practiced in an intuitive manner by analysts without any formal error estimate computations.
Ideally, error estimates are used to increase the number of elements and nodes locally and /or

globally to obtain a more optimal mesh. The order of the element (linear, quadratic, etc.)
remains unchanged.

3. p Refinement: This is a relatively new method where the number of elements and element
shape remain the same. Instead, the order of the element is increased by the addition of
midside and interior nodes. Higher order elements used higher order polynomials to represent

the displacement or temperature field. The accuracy of the solution improves because of the
additional nodal degrees of freedom in the new mesh.

FEach method has its own advantages and disadvantages. In r refinement, the most optimal mesh

can be obtained for a fixed number of degrees of freedom. However, there is no guarantee that

the number of degrees of freedom in the mesh is sufficient to satisfy the accuracy requirements
of the user. The h refinement method has the advantage of being applied locally and/or globally
to force the solution error to within acceptable bounds. However, mesh restructuring is required
which usually dictates the need for a robust automatic mesh generator. The p refinement method

has shown promising results compared to the A refinement method. However, it is more difficult to
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implement and requires access to the finite element source code which is not required by the other

two techniques.

Recently, a powerful 2-D automatic mesh generation code has been developed at Sandia National
Laboratory called FASTQ and currently installed on the Computer Aided Systems Engineering
Vax computer at Rome Air Development Center. Due to the availability of this automatic 2-D
mesh generator and due to the lack of source code access to commercial finite element codes, an A

refinement adaptive meshing strategy was selected for this research.

The discretization error is assessed using element norms. For this we have employed the L2 norm
of the error defined in Eq. (23). Now, the strategy is to force this measure of the error to be
sufficiently small relative to a reference value in order to achieve the desired pointwise accuracy in

oy. The Ly norm of the projected (i.e. assumed exact) von Mises stress field, ||o,||2 is taken as the

reference value. Thus, the accuracy criteria is

I°6y — “agll2 < nllovll2 (30)

where 7 is small. However, difficuity lies in determining whether ||o,||;norm should be computed
locally or globally. If this norm is computed locally (i.e. over the element domain), then the
adaptivity algorithm will be excessively demanding [25]. In effect, a uniform relative accuracy
requirement will be imposed for all elements regardless of the magnitude of the element stress. The
absolute estimated error may be very small for an element, but because the element is understressed,
|[°a;|l2 is also small, and the algorithm will demand refinement in spite of the small absolute error.

On the other hand, if ||o}]|2 in Eq. (30) is computed globally by summing up ||°a;||2 for all elements,

then 7 loses its significance as the relative error norm ratio for each element.
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In an attempt to resolve this delimma, an adaptive accuracy criteria is introduced which can yield
“optimal” meshes from a practical viewpoint. Let 1 denote a nominal target error fraction of the

global L, norm of the C° stress field. Then, the following accuracy criteria is used:

NE(Ca)llz = Iy - “oll2 < “n(llodll2)masr (31)
where
. _ GRM S(a,‘,))“
n=n ( RMS(°0?) (32)
(llosl2)maz = fg:%x o3l (33)

where a is a constant > 0 which controls the degree of accuracy adaptivity. If @« = 0, then a
nonadaptive accuracy requirement is imposed. It is observed that the effect of Eq. (32) is to
demand the greatest accuracy for the element with the highest RMS measure of o] and to relax
the accuracy requirement for all elements where RM S(o;) < GRM S(o;). Practical bounds must
be placed on °n computed by Eq. (32) to prevent mesh transitioning problems. For example, ¢y

may be permitted to vary only from 0.01 to 0.20 with a nominal value of 0.05.

Note we have selected the maximum element L; norm of o} as the reference value in Eq. (31) to
which the element norm of the error,||E(%a,)||2, are compared. This choice represents a compromise
between a purely element-based reference value and a purely global-based reference value. Numer-
ous numerical experiments based on local, global, and local/global reference values indicated this
choice avoided the problem of excessive mesh refinement in understressed regions, while retaining
the ability of the mesh to converge quickly to sufficiently accurate solutions in highly stressed re-
gions. In a similar manner we have found that an accuracy adaptivity constant of a = 2.0 yields
good results in terms of adapting the accuracy of the solution to the rate of change of the stress

field. However, more work is clearly needed in this area.
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While the error norm ratio -Hh%;ﬁiui- will not bound the pointwise error E£(a,), the pointwise error
will generally converge faster than the error norm ratio as the mesh is refined. Thus, the strategy
is to use the error norm ratios as a basis for adaptivity, while monitoring the relative estimated

pointwise errors in o, at the peak stress points in the mesh.

An h-Based Adaptive Remeshing Scheme:

Let € denote the right hand side of Eq. (31). Define the error ratio £ as

_ E(°0y) _ [IFos - “5.|l

€ €

€e

(34)

If £ > 1, then the element size h, is decreased. If £, < 1, then we increase the element size h.. If

£ = 1 for all elements, then the desired adaptive accuracy requirement has been achieved.

To obtain appropriate values by which to increase or decrease element size h, the asymptotic
convergence rate criteria is invoked at the element level. If the order of the assumed polynomial
used to approximate the field variable is p, then one can expect a convergence rate of the field
variable of order AP*! since higher order terms have been omitted from the assumed field. Similarly,
the convergence rate for derivatives of the field variable, such as strains or temperature gradients,
will have a convergence rate of order hPt1-! where ! is the order of differentiation required to
obtain the derivative variables. One can expect, then, that the convergence rate of E(°s,) will be

of order h?*!~!. Since the L; norm of E(°a,) is given by the square root of the integral of E(°a,),

it is argued that the convergence rate for || E(°o,)||2 is
CRUIECo)l) & [ [(W2H1-)aV] /2 = (ho =041y (35)
For unear elements and 2D and 3D elasticity, p = 1 and [ = 1, yielding

CR(|E(®av)lj2) o £¥/? (36)
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Denoting the current mesh with the pre-subscript ¢, the requirement that §,,{ = 1 with Eq. (36)

yields
e cp(2p+1)/
e S ()
Thus,
ip1Ch = £~ ey (38)
For linear elements, one has
b= s (39)

7 Automatic Adaptive h-refinement Mesh Generation

Recently, a new automatic mesh generation technique has been developed at Sandia National Lab-
oratories which is ideally suited for adaptive h-refinement. The technique, called “paving” in 2-D
and “plastering” in 3-D, uses a boundary description of the geometry and user-specified element
sizing functions along the boundary segments to generate all quadralateral meshes. Essentially,
rows of elements are laid down, element by element, in a counter clockwise direction around the
exterior perimeter preceding inward and in clockwise directions around interior perimeters (i.e.
holes) preceding outward. Sophisticated algorithms are employed to transition between different
element sizes and to correct the mesh where rows of elements overlap. The meshing algorithms are
implemented in a large FORTRAN code called FASTQ (FAST Quadralaterals). The reader is re-

ferred to Reference [33] fcr more details of this powerful mesh generation technique for quadrilateral

meshes.
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Because elements are inserted into the mesh one by one, the algorithm is well suited for adaptive

meshing. Details of this algorithm will be forthcoming.

8 Implementation

The two error analysis approaches of the previous section were implemented into two separate
in-house finite element codes, called ERRFEM1 and ERRFEM2. The FASTQ 2-D automatic
mesh generation code, discussed above, was modified to implement adaptive meshing according to
Eq. (39). Subroutines were also added to FASTQ for automatic generation of complete input data

files for ERRFEM1 and ERRFEM2 based on user-supplied data through interactive session.

Note that the error estimation algorithms have been implemented into in-house finite element
codes, instead of implemented as separate stand-alone codes which interface to commercial finite
element codes as originally planned (Fig. 2). This was necessary due to the technical difficulties of

interfacing to a commercial code, the research nature of this work, and the time constraints on the

project.

The sequence of activities with the error analysis and automatic adaptive mesh generation is illus-
trated in Fig. 3. First, the user defines an initial boundary representation of the 2-D geometry with
associated meshing data either interactively in FASTQ or through the preparation of a FASTQ
input data file. Meshing data consists of simply the type of element (four-, eight-, or nine-noded),
the number of elements along each given boundary segment, the uniformity of element spacing
along each boundary segment, and the type of mesh generation technique (i.e. paving technique).

Next, FASTQ uses this information and the paving algorithm to automatically generate an initial

2-24




finite element mesh. The user then interactively requests that an input file be generated for the
finite element/error analysis codes. The system then prompts the user for additional finite element
modeling data, such as material properties, and loading and boundary conditions. After specifica-
tion, the input file for ERRFEMX is written, as well as a FASTQ binary mesh database file and
a FASTQ input file.

The finite element /error analysis code is then executed. Execution causes the input file to be read,
a finite element analysis to be performed, error ratios to be calculated for each element, and the
error ratio results to be appended to the end of the binary mesh database file. FASTQ is invoked,
and the user selects the remeshing option under the mesh processing module. The system then
prompts the user for the name of the FASTQ input data file and the binary mesh database file.
The paving mesh generation algorithm is executed where new elements are sized based on the error
ratios contained in the database file and old element sizes according to Eq. (39). The geometry
definition information contained in the FASTQ input data file is used to ensure that remeshing is

based on the originally defined geometry, and not the geometry defined by the previous mesh.

Note that this process could have been streamlined considerably by merging the FASTQ code
with the ERRFEM codes. However, the resulting loss of modularity would have hindered future
applications involving stand alone commercial finite element codes, stand alone error analysis codes,
and stand alone automatic adaptive mesh generation. For this reason it was decided to keep
adaptive mesh generation and finite element and error analysis separate. Furthermore, work is
currently underway on implementing the error analysis algorithms in a stand alone code whick will

interface to FASTQ for mesh generation and NISA?2 for finite element analysis.
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9 Examples

A comparison of the proposed error estimators and h-based adaptivity algorithms is illustrated with
the following 2-D examples involving four-noded bilinear quadrilateral elements. The first example
presented is the 2-D plane stress problem of a thin plate with hole under tension (Fig. 4(a)). The

second example studied is the endloaded cantilever beam shown in Fig. 4(b).

The initial coarse-mesh finite element model representing one fourth of the plate is shown in Fig.
5(a), with the corresponding nodal averaged J, stress distribution shown in Fig. 5(b), where the

stress distribution has been nondimensionalized by the applied traction o¢. The relative pointwise

error (RPWE) is defined as

rpwE 4 (T)exs = 5) (40)

(av )cxact.

and has a value of 23.5% at the critical stress point (top of hole) for this me-i. The “exact” von
Mises stress value (4.35) was obtained using a fine mesh consisting of 1400 elements, 1491 nodes,
and 2940 active degrees of freedom. A series of convergence studies established that this mesh was

sufficiently accurate to represent the “exact” stress distribution.

In Figures 5(c)-4 results are presented for the least squares fit (LSF) method for obtaining o;.
A nominal target accuracy ratio of n = 0.05 was used with upper and lower limits of 0.01 and
0.20 placed on the adaptive accuracy ratio 7. In Figs. 5(c) we show the distribution of adaptive
accuracy ratio given by Eq. 32. The corresponding error ratio distribution given by Eq. (34) are

plotted in Fig. 5(d). The maximum error ratio is 4.86 corresponding to °n = 0.014 and occurs at

the critical stress element.
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Employing the new element size adaptivity function given by Eq. (29) and the “paving” mesh
generation technique, the first mesh refinement is shown in Fig. 6(a). To avoid possible mesh
transitioning problems, elements with error ratios less than one were not allowed to increase in
size. Again, the von Mises stress distribution is shown in Fig. 6(b), and the relative pointwise
error at the critical stress point is now 0.10. Adaptive accuracy distribution and corresonding error
ratio distribution are shown in Figs. 6(c) and 6(d). Note that the maximum error ratio has been
reduced from 4.86 to 3.30, while the relative pointwise error in o, at the top of hole has decreased

from 23.5% to 10.0%. As expected, the pointwise error converges faster than the norm of the error.

Figs. 7(a)-7(d) show the third and final remesh results for the LSF method. The relative point-

wise error at the critical stress point and the maximum error ratio are now and 0.045 and 1.40,

respectively.

Analogous results for the statically cquivalent (SE) von Mises stress based method are shown in
Figs. 8-10. Again, a target accuracy of n = 0.05 was sourht. Six Newton-Raphson iterations were
performed for each analysis to obtain the statically equivalent piecewise continuous von Mises stress
field. The results indicate improved convergence characteristics of this method, as evidenced by
the higher maximum error ratios for the same coarse mesh and faster convergence of the pointwise

percentage error at the critical stress point.

The effect of adaptive accuracy factor a in Eq. (32) was explored by setting a = 0 and repeating
the analysis using the statically equivalent stress based method. The result was poor remeshes due
to distorted elements. The error ratios were found to be higher at the distorted elements than at
the critical stress region. Thus, refinement occurred at understressed but distorted element regions

initially. After several remeshes, refinement did proceed to the critical stress region, albeit slowly,
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but the target accuracy was not reached before the error ratio couverged to one. The implication

of this observation will be discussed in the following section.

Results for the plate with hole problem are summarized in Fig. 11 which illustrates the convergence
characteristics of both the pointwise error and the error norm ratio of the two methods. From Fig.
11(a) one can see the superior convergence characteristics of the SE method compared to the LSF
method in both the error norm ratio (ENR) for the critical element and the relative pointwise error
(RPWE) at the critical stress point. In F ng 11(b) the effect of adaptive accuracy on convergence is
clearly demonstrated. The nonadaptive approach exhibited relatively slow convergence characteris-
tics. The increasing slope of both the ENR and RPWE curves for the adaptive accuracy approach
indicates that accuracy is increasing at a faster rate than the rate degrees of freedom are increasing,

a phenomenon attributable to the loc.lized mesh refinement in the vicinity of the critical stress

point.

In the beam example only the SE method was used to obtain the improved o stress field. The
initial uniform finite element mesh for the beam problem is shown in Fig. 12(a). For convenience
Poicscn ratio was set to zero. The von Mises stress distribution, nondimensionalized by the applied
traction og is shown in Fig. 12(b). At the critical stress point at the left edge on the top or bottom
of the beam, the relative pointwise error is 11.3% for this coarse mesh. Figs. 12(c) and 12(d) saow
the adaptive accuracy and error ratio distributions obtained. Figures 13 and 14 present the results
for the first and third (final) remeshes. These results are summarized in Fig. 15. Note the excellent

convergence of the pointwise error tc the target accuracy in the first remesh.
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10 Discussion

In the plate example the error norm ratios for the critical stress element were found to be less than
the relative pointwise error at the critical stress point for a given mesh. The opposite was true for
the beam problem. This result is to be expected since the error norm does not bound the pointwise
error. Since the norm of the error reflects an “average” error over the element volume, one can
expect in areas of high stress concentration, such as at the top of the hole in the plate, the relative
pointwise error to exceed the error norm ratio. Therefore, convergence of the error ratio to one
is not a sufficient condition for obtaining the target accuracy in a pointwise sense. In practice we
have observed that imposing an adaptive accuracy requirement according to Eq. 32 has proven to
be effective in driving the critical pointwise error to be within the tarzet a~curacy as the error ratio
approaches unity. However, more theoretical and numerical work is needed to provide an improved

correlation in some sense of the relative pointwise error 0 an error norm ratio.

Two interesting observations are noted for the beam proh‘em. First, by comparing Figs. 13(a),
13(c), and 13(d), it is clear that the SE method predicts a relatively high error ratio for distorted
elements. Secondly, the final remesh shows relatively small element sizes on the beam’s neutral axis
where the y boundary conditi 'n constraint is imposed. Although stresses are not high at this point,
a theoretical discontinuity exists in the o, stress across the interelement boundary at this point
d: _ :he reaction force applied by the boundary condition constraint. The result is a theoretical
discontinuity in the von Mises stress field at this point. Therefore, the smoothed continuous von
Mises stress field at this point does not represent an improved solution. Future work must account

for such situations if stress based error estimators are to be reliably used for automatic adaptive

mesh refinement.




11 Conclusions

Two new von Mises or effective stress based error estimators were introduced and compared. An
effective stress based error estimator offers some significant advantages over residual and other
stress-based error estimators. First, because it is a scalar function, the error estimator is com-
putationally efficient to compute. Second, it provides a natural means by which the concept of
adaptive accuracy can be introduced, thereby permitting optimal meshes from an engineering or
failure-oriented perspective. Third, because the error estimator is based on a scalar function, the
method is easily extendable to 3-D problems. Fourth, the method can be easily generalized for
other problem domains by using similar scalar functions of engineering significance. For example,

in thermal analysis, the thermal energy density function is a natural scalar function to use as a

basis for error estimation.

Both methods demonstrated convergence of the critical pointwise error for the test case problems
studied. The statically equivalent error estimator method was seen to offer superior convergence
characteristics than the least squares fit method. However, for a given mesh the SE method is
computationally more expensive than the least squares fit method, especially if a local least squares
fit method is employed by simply averaging element stresses extrapolated to nodes. Thus, the
superior convergence characteristics of the SE method is at the expense of increase computational
costs for a given mesh. However, for most applications, it is preferable to minimize the number
of mesh refinements needed because of the real time involved and computer resources needed to
manage multiple finite element models. In view of this concern, the SE method is more attractive

than the LSF method. A judicious combination of the two methods may afford an optimal path to

a sufficiently accurate solution.
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12 Future Work

The finite element and error analysis codes ERRFEMI1 and ERRFEM2 are useful research tools
for quickly implementing and testing error estimation algorithms. However, to be of greater utility
to the Air Force, the error estimation algorithms must also have the capability to accept finite
element results obtained from commercial finite element codes such as NISA2. In addition, the
two error estimation algorithms should be integrated into a single code. Thus, the first task on the
agenda is to bring ERRFEM1 and ERRFEMZ2 error analysis codes together into a single finite
element /error analysis computer program which will interface to FASTQ data files for mesh data
and to NISA2 output files for analysis data, if desired. This task is already underway and is 70%

completed in the form of a C computer code. The code is scheduled to be completed by May 1,

1991.

Future work will also include extension of the error estimation algorithms to thermal analysis
problems. Extension to thermal analysis is critical since thermally induced stresses and strains
often result in microelectronic device reliability problems. Thermal analysis error estimation can
be achieved by replacing the von Mises stress function appearing in the algorithms with a scalar
function, such as thermal energy density, of the heat flux vector. However, since heat flux is typically
not computed at element gauss points by commercial finite element codes, the error analysis code
will be modified to compute the heat flux distribution from finite element nodal temperature results.
Thermal finite elements also must be added to the code so that the code will have a stand-alone

thermal finite element analysis capability. This implementation is quite straightforward.

Error estimation based on comparing an “improved” piecewise continuous function (i.e. von Mises

stress) with the finite element discontinuous function are based on a continuity assumption. It is
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theoretical solution may, in fact, be discontinuous. One example is the von Mises stress function
across intermaterial boundaries. Under these conditions, the in-plane Cauchy stress components
parallel to the intermaterial boundary may be discontinuous, which results in a theoretically dis-
continuous o, stress function. Accordingly, one of the major focus of future work will be to modify
the error estimation algorithm to handle intermaterial boundaries and other sources of stress dis-
continuities (such as point loads perpendicular to interelement boundaries). Conceptually, the
proposed error estimation algorithms can be easily modified to account for these circumstances.
However, implementation presents a more serious challenge. Since intermaterial boundaries are

quite common in microelectronic devices, this work is also of critical importance.

Thirdly, the work must be extended to nonlinear problems. Again, this appears to be a straightfor-
ward task, because the error estimation algorithm can be applied independent of time and loading
history. However, for path dependent nonlinear problems, the effect of small inaccuracies in the
solution at previous time steps may have a significant impact for the current time step. This raises

the question of conditional stability and its relationship to accuracy which must be explored.

Finally, future work will include extension of the error estimation and adaptive remeshing scheme
to 3-D problems. A 3-D version of the FASTQ automatic mesh generation code is scheduled to be
released in September 1991. Only minor modifications are needed to extend the error estimation
algorithm to 3-D. However, it is expected that a significant amount of numerical studies will be

needed to study, detect, and correct automatic adaptive mesh generation problems in 3-D.
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